

Glider based analyses of Ross Sea bloom net community production: biological vs. physical controls

Meredith G. Meyer¹, Walker O. Smith Jr.², Esther Portela³, Karen Heywood¹

¹University of East Anglia

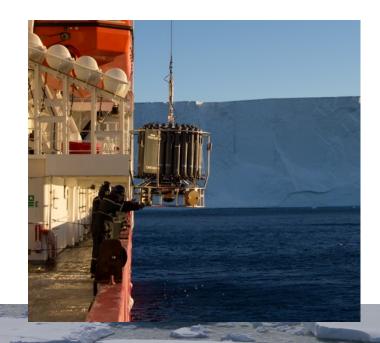
²School of Oceanography, Shanghai Jiao Tong University

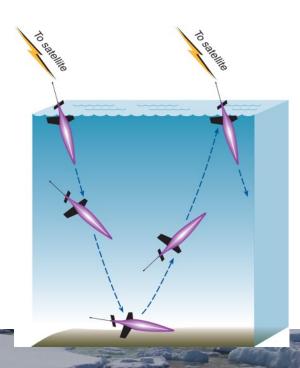
³Institute d'Oceanographie Europeen de le Mer

• The Ross Sea represents 28% of Southern Ocean PP (Arrigo et al., 2008)

- The Ross Sea represents 28% of Southern Ocean PP (Arrigo et al., 2008)
- The typical annual productive period initiates in Late October, peaks in mid-December and continues through Late February with chlorophyll α concentrations reaching >15 μ g L⁻¹ (Smith et al., 2000; 2011)

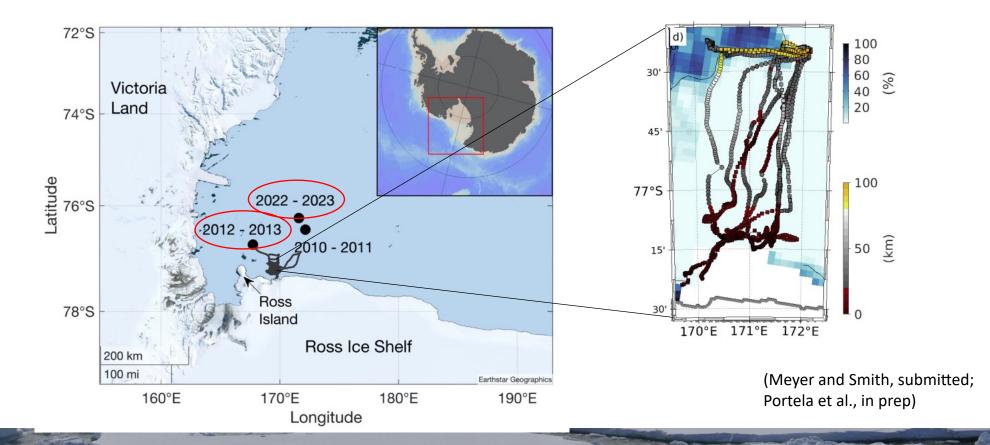
- The Ross Sea represents 28% of Southern Ocean PP (Arrigo et al., 2008)
- The typical annual productive period initiates in Late October, peaks in mid-December and continues through Late February with chlorophyll α concentrations reaching >15 μ g L⁻¹ (Smith et al., 2000; 2011)
- Bloom succession usually moves from *Phaeocystis antarctica* to diatoms around the daily biomass peak (Jones and Smith, 2017; Meyer et al., 2022)


• Carbon export previously measured in the Ross from traditional methods (values ranging from <0.01 – 0.1 g C m⁻² d⁻¹; Dunbar et al., 1998; Langone et al., 1997; Asper and Smith, 1999; Smith et al., 2011)



Images courtesy of BAS, MBARI, UW

- Carbon export previously measured in the Ross from traditional methods (values ranging from <0.01 0.1 g C m⁻² d⁻¹; Dunbar et al., 1998; Langone et al., 1997; Asper and Smith, 1999; Smith et al., 2011)
- Gliders present opportunity for enhanced spatiotemporal resolution



Images courtesy of BAS, MBARI, UW

• Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea

- Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea
- 2 case studies: 2012-2013 and 2022-2023

- Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea
- 2 case studies: 2012-2013 and 2022-2023
- Mass balance equations

- Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea
- 2 case studies: 2012-2013 and 2022-2023
- Mass balance equations

$$\frac{\partial POC}{\partial t} = \int_0^{500} \frac{\partial POC}{\partial t} - F_{Adv}$$

$$NCP_{100} = PQ * (\int_{0}^{100} \frac{\partial O_2}{\partial t} - F_{K_z} - F_{Adv} - ASE_{ML})$$

- Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea
- 2 case studies: 2012-2013 and 2022-2023
- Mass balance equations

$$\frac{\partial POC}{\partial t} = \int_0^{500} \frac{\partial POC}{\partial t} - F_{Adv}$$

$$NCP_{100} = PQ * (\int_{0}^{100} \frac{\partial O_2}{\partial t} - F_{K_z} - F_{Adv} - ASE_{ML})$$

- Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea
- 2 case studies: 2012-2013 and 2022-2023
- Mass balance equations

$$\frac{\partial POC}{\partial t} = \int_0^{500} \frac{\partial POC}{\partial t} - F_{Adv}$$

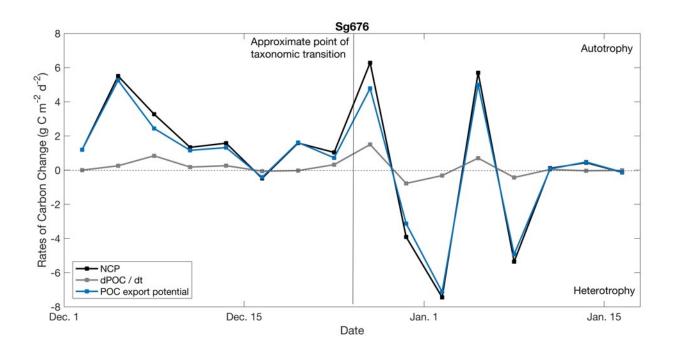
$$NCP_{100} = PQ * (\int_0^{100} \frac{\partial O_2}{\partial t} - F_{K_Z} - F_{Adv} - ASE_{ML})$$

$$\text{Biological} \qquad \text{Physical}$$

$$\text{Fluxes} \qquad \text{Fluxes}$$

- Limited (<10) gliders equipped with biogeochemical sensors have been deployed in the Ross Sea
- 2 case studies: 2012-2013 and 2022-2023
- Mass balance equations

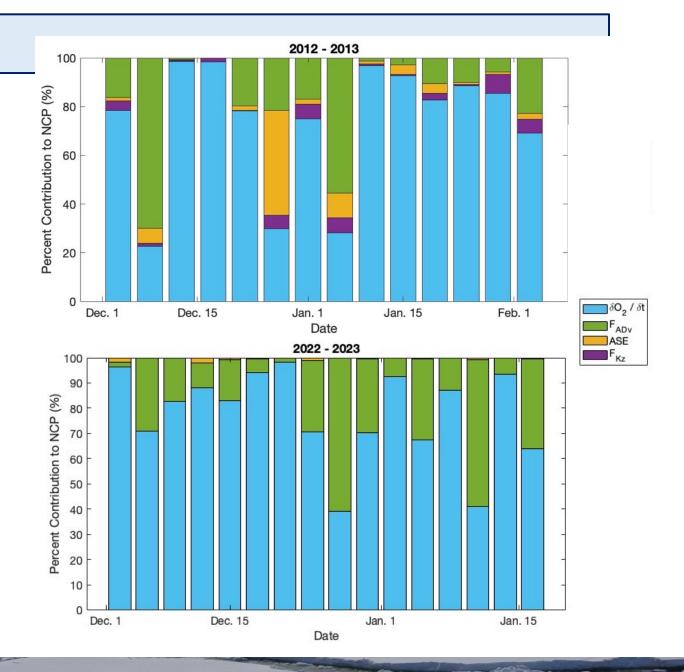
$$\frac{\partial POC}{\partial t} = \int_0^{500} \frac{\partial POC}{\partial t} - F_{Adv}$$

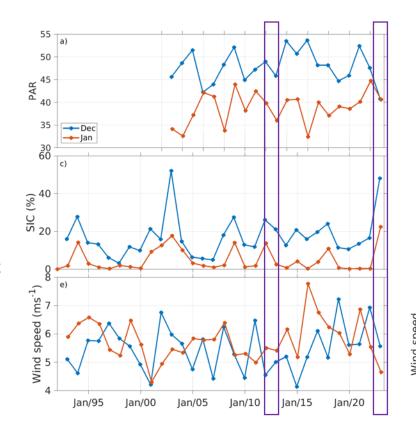

$$NCP_{100} = PQ * (\int_0^{100} \frac{\partial O_2}{\partial t} - F_{K_Z} - F_{Adv} - ASE_{ML})$$

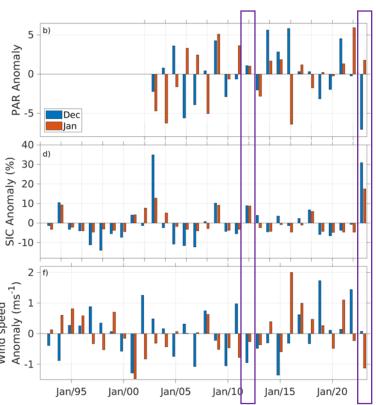
$$\text{Biological} \qquad \text{Physical}$$

$$\text{Fluxes} \qquad \text{Fluxes}$$

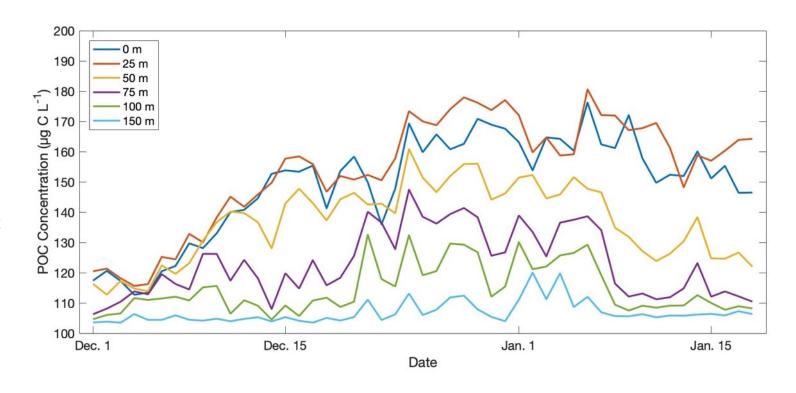
$$Export_{POC}^* = NCP - \frac{\partial POC}{\partial t} \text{ (Meyer et al., 2022)}$$


 2022-2023 represented a very productive (average NCP = 0.67 g C m⁻² d⁻¹) year with high POC export potential

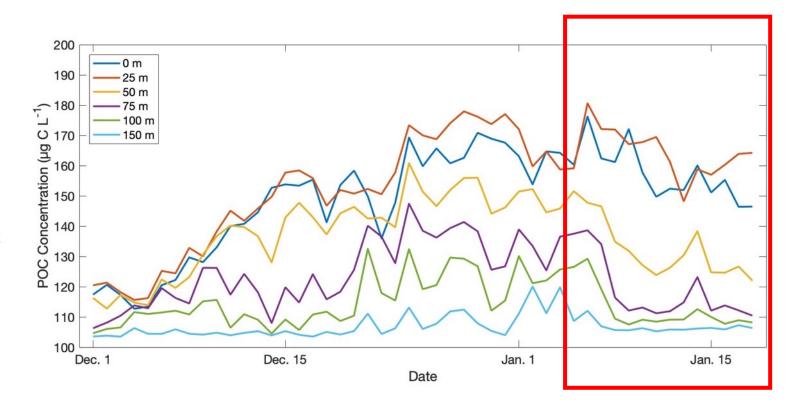

- 2022-2023 represented a very productive (average NCP = 0.67 g C m⁻² d⁻¹) year with high POC export potential
 - >1 magnitude higher values than 2012-2013 season


Year-to-Year Averages			
all units = g C m ⁻² d ⁻¹			
	NCP	dPOC/dt	POC export*
2012-2013	0.05	0.22	-0.17
2022-2023	0.67	0.15	0.52
Difference	0.62	-0.07	0.69

- 2022-2023 represented a very productive (average NCP = 0.67 g C m⁻² d⁻¹) year with high POC export potential
 - >1 magnitude higher values than 2012-2013 season
- High NCP appears driven by biologic fluxes > physical fluxes

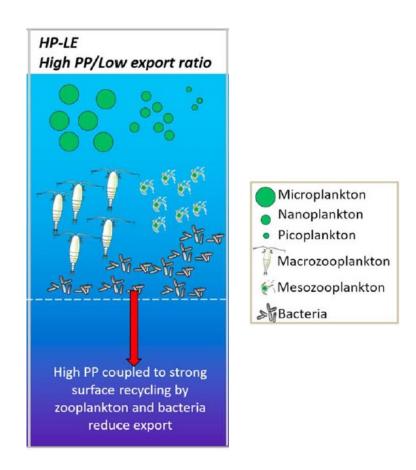


- 2022-2023 represented a very productive (average NCP = 0.67 g C m⁻² d⁻¹) year with high POC export potential
 - >1 magnitude higher values than 2012-2013 season
- High NCP appears driven by biologic fluxes > physical fluxes

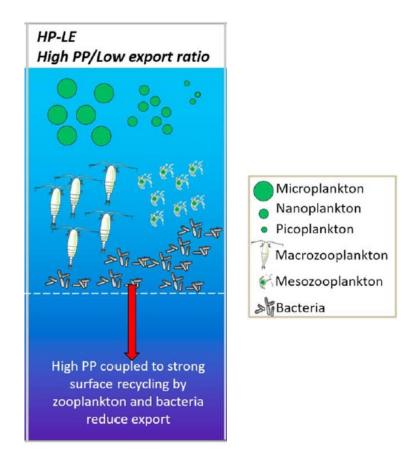


- 2022-2023 represented a very productive (average NCP = 0.67 g C m⁻² d⁻¹) year with high POC export potential
 - >1 magnitude higher values than 2012-2013 season
- High NCP appears driven by biologic fluxes > physical fluxes
- Low POC concentrations and dPOC/dt

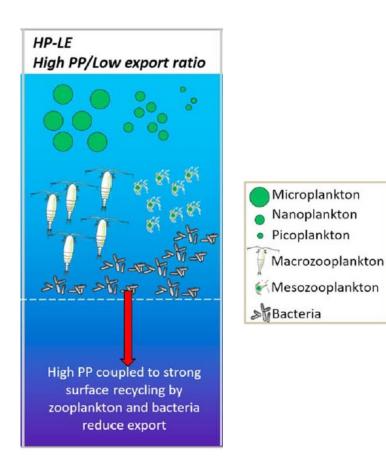
- 2022-2023 represented a very productive (average NCP = 0.67 g C m⁻² d⁻¹) year with high POC export potential
 - >1 magnitude higher values than 2012-2013 season
- High NCP appears driven by biologic fluxes > physical fluxes
- Low POC concentrations and dPOC/dt
 - POC retention in the upper water column


• 2022-2023 was a much more productive year than 2012-2013, but enhanced production does not translate to more POC removal during our study period

- 2022-2023 was a much more productive year than 2012-2013, but enhanced production does not translate to more POC removal during our study period
 - High NCP appears related to enhanced biological fluxes with lower than average physical fluxes


- 2022-2023 was a much more productive year than 2012-2013, but enhanced production does not translate to more POC removal during our study period
 - High NCP appears related to enhanced biological fluxes with lower than average physical fluxes
 - Uncertain how this balance would change in the late season

- 2022-2023 was a much more productive year than 2012-2013, but enhanced production does not translate to more POC removal during our study period
 - High NCP appears related to enhanced biological fluxes with lower than average physical fluxes
 - Uncertain how this balance would change in the late season
- 2022-2023 experienced higher F_{ADV} but lower air sea exchange (ASE_{ML}) potentially due to enhanced ice cover


• Our 2022-2023 analysis supports further clarification of the Ross Sea as a high productivity – low export ratio system (Henson et al., 2019; Meyer et al., 2022)

- Our 2022-2023 analysis supports further clarification of the Ross Sea as a high productivity – low export ratio system (Henson et al., 2019; Meyer et al., 2022)
- In both studies, biological fluxes contribute greater to the net carbon mass balance than physical fluxes

- Our 2022-2023 analysis supports further clarification of the Ross Sea as a high productivity – low export ratio system (Henson et al., 2019; Meyer et al., 2022)
- In both studies, biological fluxes contribute greater to the net carbon mass balance than physical fluxes
 - → Differential responses of biological and physical fluxes in future climate projections

Meyer, M. G., Jones, R. M., & Smith, W. O. Jr. (2022). Quantifying seasonal particulate organic carbon concentrations and export potential in the southwestern Ross Sea using autonomous gliders. Journal of Geophysical Research: Oceans, 127, e2022JC018798. https://doi.org/10.1029/2022JC018798

Natural Environment Research Council

Thank you! Questions?

meredithmeyer0@gmail.com @mgmeyer9 on X