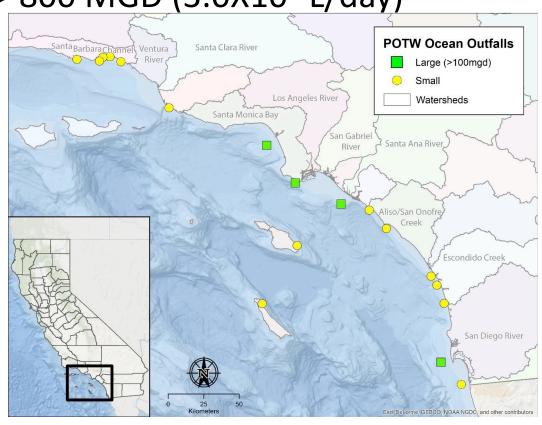
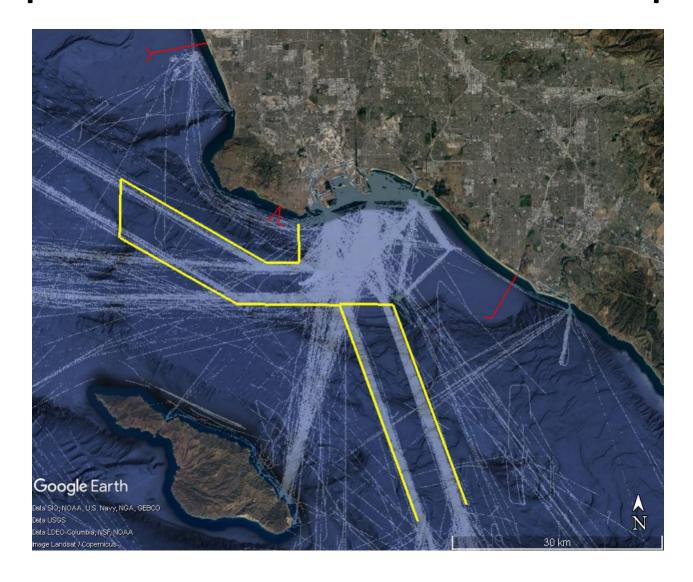
# Applying AUVs to routine offshore Water Quality Monitoring in Southern California

By

Dario Diehl


Southern California Coastal Water Research Project (SCCWRP)

### Southern California


• > 21 million people

4 major POTW discharge + others: > 800 MGD (3.0X10<sup>9</sup> L/day)

- Current regulations
  - no harm to organisms near plume
- Grid-based WQ monitoring
  - CTD casts
  - Niskin bottles for water samples
- Applying AUVs
  - Couple of case studies



# Complications: Commercial Ship Traffic



## Case Study 1

- Research effort: Health effects related to sewage pipe maintenance
  - 3 wk diversion: 5.3X10<sup>8</sup> L/day from a 7 Km ocean outfall to a 1.6 Km pipe
  - Slocum Gliders, CTD/boat sampling, wave rider, wire walkers, moored ESP, etc.
  - Involved multiple organizations and universities



### What did we learn from Case 1

- No observed ocean effects from the short-term change
- Glider data
  - localized upwelling related to HABs toxin (Pseudo-nitzschia)
- Operationally, needed multiply gliders to complete study
- 24 hour monitoring was required
- Dropped scheduled communications

# Case Study 2

- 2) Replicating a monitoring grid for a regulated sewage discharge
  - City of Los Angeles discharges 13.2X10<sup>8</sup> L/day from a 8 Km ocean outfall
  - Monitoring grid area about 400 Km<sup>2</sup>, depths range 9 750m



### What did we learn from Case 2

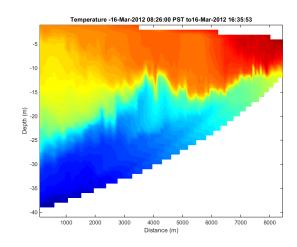
- The monitoring boat took 3 days to complete the grid
- Glider took 15 days to traverse 54 of 58 waypoints
- Operationally, shallow depths were problematic
  - Glider programmed to avoid ship drafts
  - Tidal forces and wind currents
- Kelp will entangle a Glider

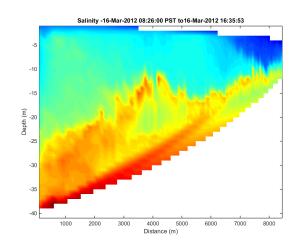
## Are Liability Issues Warranted

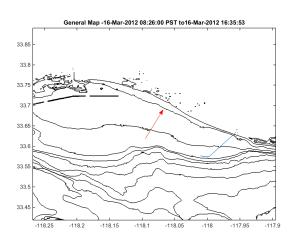
- Observations over numerous deployments
  - Recreational boats have hit gliders and a Wave Rider
  - Commercial fisherman have pickup gliders for concern or reward
  - Good Samaritans
  - Optical sensor damage
  - Nearly lost a glider
  - Ballast pump failure nearshore
  - Reliability a concern









## AUVs Operations Add to Monitoring Cost


- NPDES permits require Water Quality (WQ) monitoring at depth
  - Gliders can't take discrete water samples
  - Available optical sensors do not meet all the WQ requirements
- Maintenance costs include ballasting, sensor calibration, factory repair, telemetry
- 24 hour monitoring: many problems occur nights, weekends, holidays
  - Experienced people were needed to handling emergencies
  - Potential overtime for personnel
- Agency personnel have limited budgets and data processing expertise
  - need user friendly, simplified, turnkey software

# Applying Gliders to Regulatory Agencies

- Use it as a specialty tool
  - Plume tracking with CDOM measurements
  - Future uses: HABs and ocean acidification monitoring
- Glider data was superior to agency CTD monitoring data
  - The challenge is to filter out the details for simplify graphics
- Agencies see multi-day deployments as useful
  - The challenge is distinguishing old and new plume





