Spatial and temporal scales of chl-a variability in the SAZ using a glider

Hazel Little
Supervisors: Sandy Thomalla, Sebastiaan Swart, Marcello Vichi
University of Cape Town

Introduction

- Southern Ocean is important zone for the biological carbon pump.
- Phytoplankton have high temporal and spatial variability in the SAZ.
- Patchy as a result of small scale drivers.
- High-resolution sampling is required to understand phytoplankton variability and estimate primary production.
- Issues with gliders and their quasi-Lagrangian sampling.
- Mesoscale = 11 25 days, 10 100 km
- Submesoscales = 2 10 days, 1 10 km

Aims

Temporal Analysis

- 1. How much of the observed variability is seasonal, mesoscale and submesoscale?
- 2. Does the variability change seasonally?
- 3. How do they relate to the physical drivers (wind and MLD)?
- 4. What scales must you sample at in order to resolve the variability of the seasonal cycle?

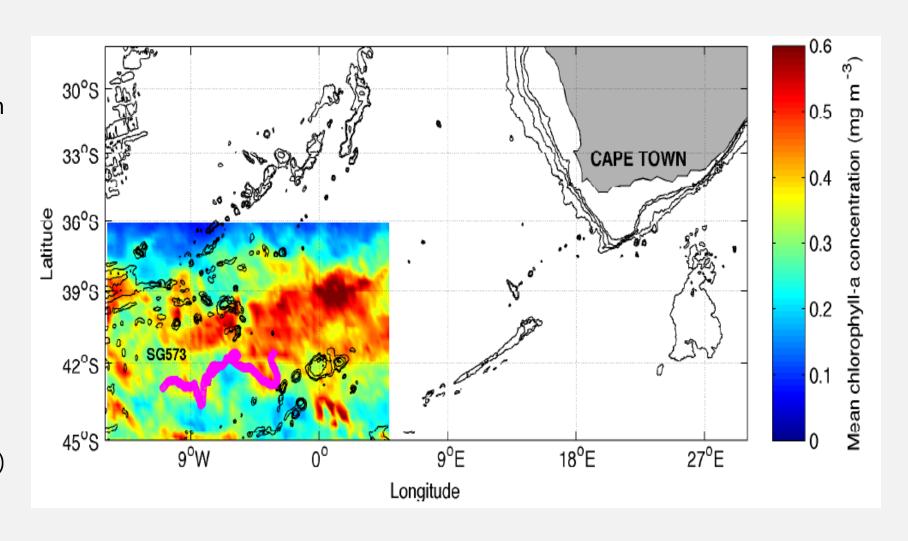
Spatial Analysis

- 1. How does the observed variation change with length scales in the SAZ?
- 2. Does the variability change seasonally?
- 3. To what extent is the variability that gliders measure due to spatial patchiness?

Data and Methods

Data

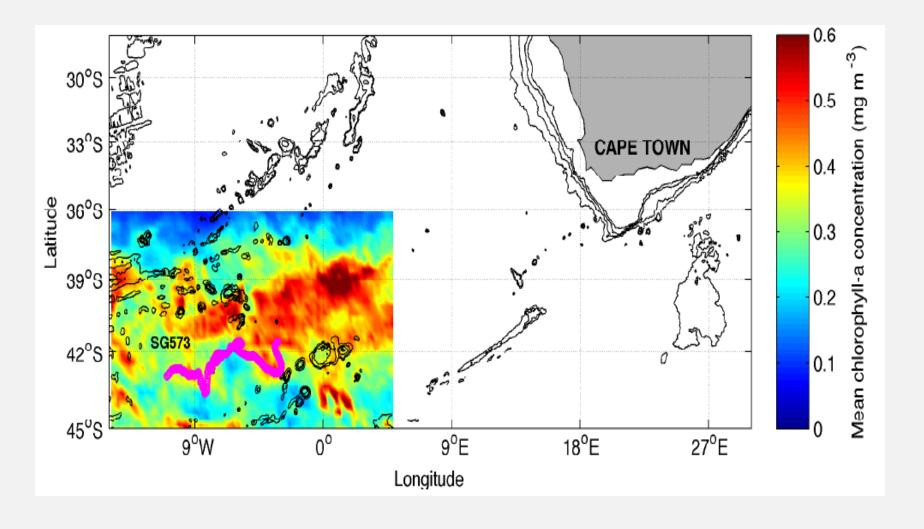
- A Seaglider (SG573) was deployed in the SAZ from spring 2012 to summer 2013 (5.5 months).
- Chl-a, particular organic carbon (POC) and mixed layer depth (MLD) all collect by the glider.
- Wind stress obtained from SeaWinds from QuickSCAT satellite.
- Ocean colour and sea surface temperature (SST) from MODIS Aqua.



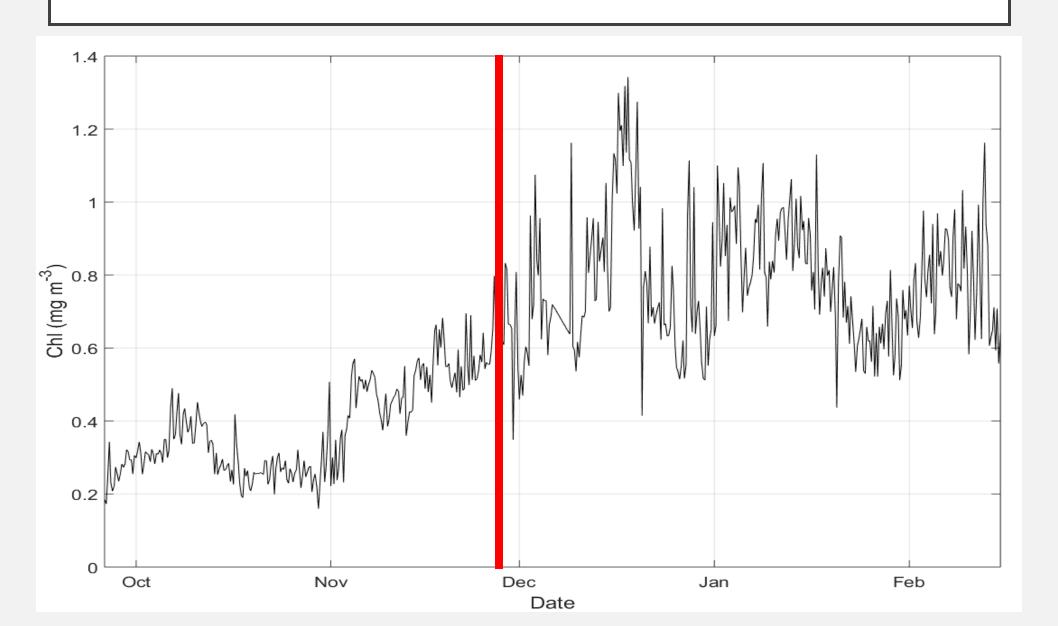
Data and Methods

Methods

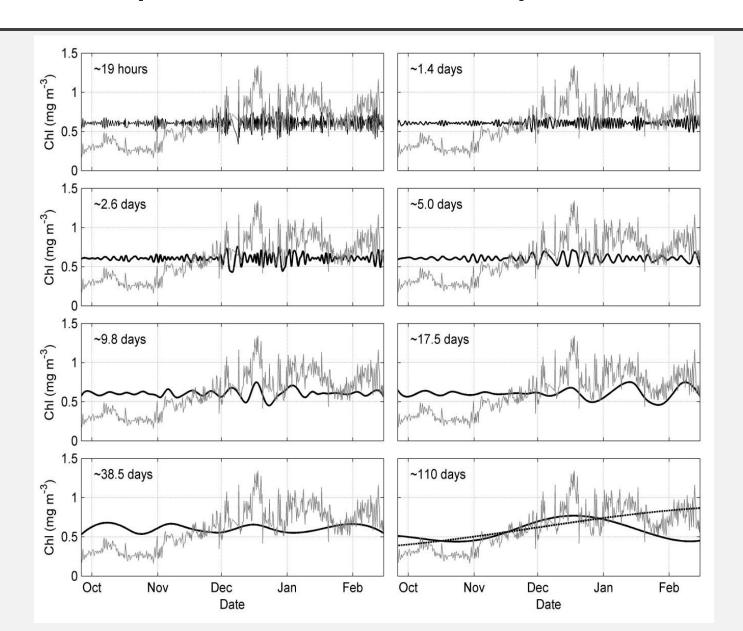
- Temporal variability
 was investigated with
 Empirical Mode
 Decomposition (EMD).
- Spatial variance was calculated at different length scales (Mahadevan and Campbell, 2002). $S \sim L^p$



Glider chlorophyll-a time series



Empirical Mode Decomposition



Results - Temporal Analysis

Scales of variability: Spring

EMD	Chl-a	MLD	Wind Stress
1	0.8 (2%)	0.9 (1%)	1.0 (2%)
2	2.1 (4%)	2.1 (10%)	2.5 (7%)
3	4.8 (33%)	4.2 (17%)	4.4 (12%)
4	9.9 (51%)	7.0 (26%)	8.2 (15%)
5	14.8 (2%)	19.5 (34%)	22.3 (21%)
6	22.0 (0%)	30.5 (7%)	Residual (3%)
7	Residual (0%)	Residual (6%)	

- Submesoscales (2, 5 and 10 days) account for 88% of chl-a variability.
- MLD and wind stress vary at similar submesoscales as chl-a.
- Chl-a variability is driven by submesoscale eddies that alter the light environment (Mahadevan 2012).

Results – Temporal Analysis

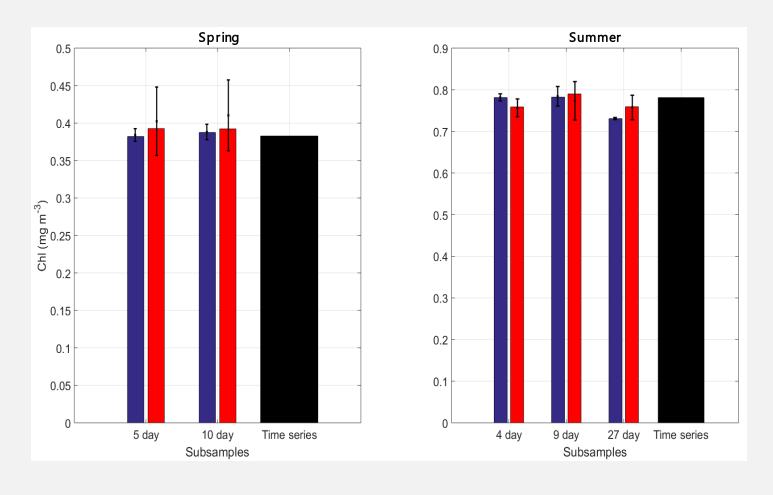
Scales of variability: Summer

EMD	Chl-a	MLD	Wind Stress
1	0.8 (1%)	0.8 (2%)	1.0 (1%)
2	2.2 (10%)	2.3 (21%)	3.0 (32%)
3	4.2 (19%)	6.1 (41%)	5.6 (45%)
4	8.9 (6%)	13.9 (39%)	10.2 (28%)
5	27.1 (54%)	45.5 (8%)	19.5 (9%)
6	62.5 (0%)	Residual (0%)	38.8 (30%)
7	Residual (4%)		Residual (0%)

- Submesoscales (2, 4 and 9 days) account for 27% of chl-a variability.
- MLD and wind stress vary at similar submesoscales as chl-a.
- Storm interaction alter the MLD, nutrient and light environment, driving chl-a variability.

Results – Temporal Analysis

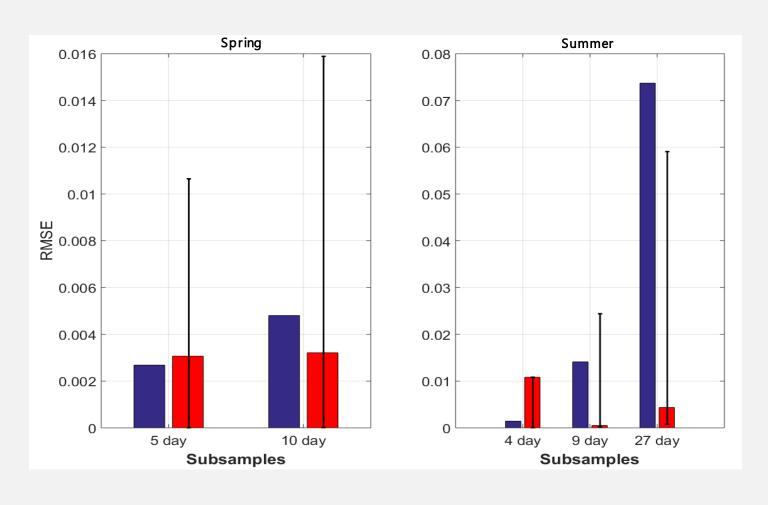
Subsampling at dominate scales of variability



- Mean of set and random subsampling captured the time series mean.
- Standard deviation of set subsampling captured the time series standard deviation.

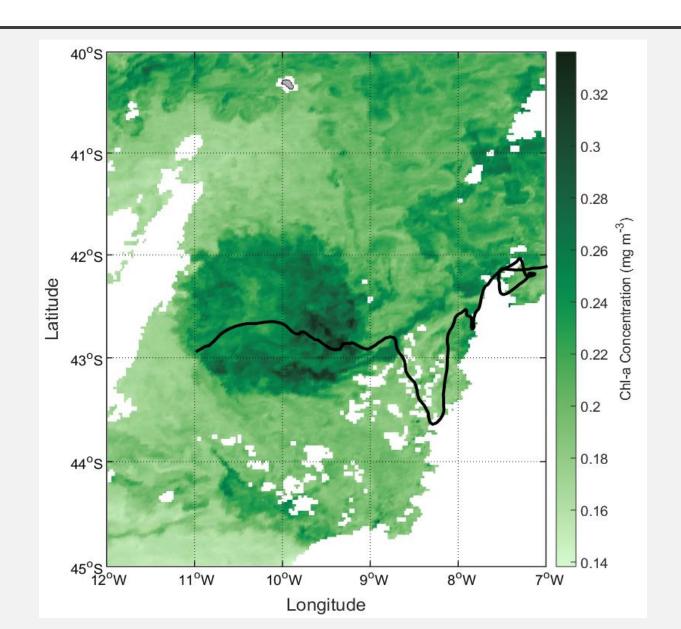
Results – Temporal Analysis

Subsampling at dominate scales of variability



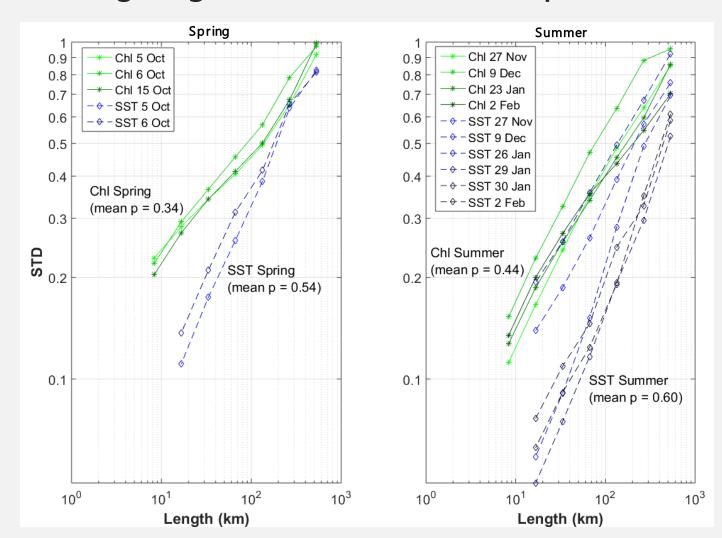
- Need to sample periodically.
- Subsample at frequencies (less than 10 days) in both spring and summer to resolve to chl-a variability.

Ocean colour grid



Results – Spatial Analysis

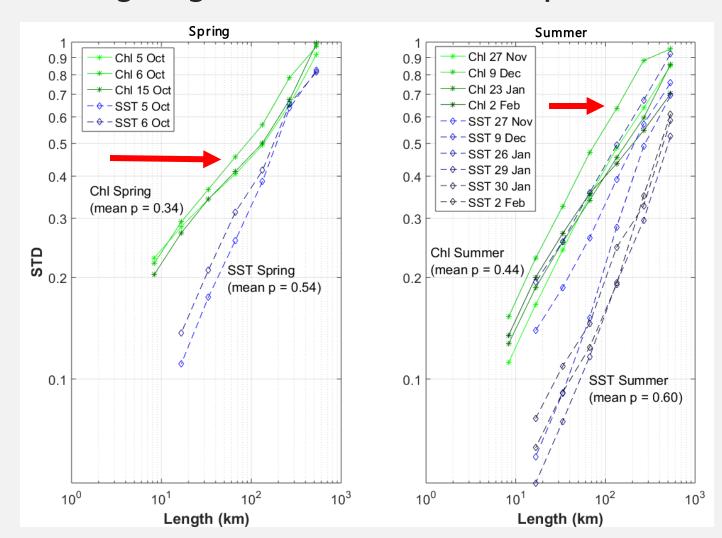
Investigating scales of chl-a and SST patchiness



- Slope (p) is the measure of spatial heterogeneity.
- Phytoplankton are equally patchy in spring and summer.
- Higher variance in summer than spring due to higher maximum biomass.
- Phytoplankton are patchier than SST due to growth.

Results – Spatial Analysis

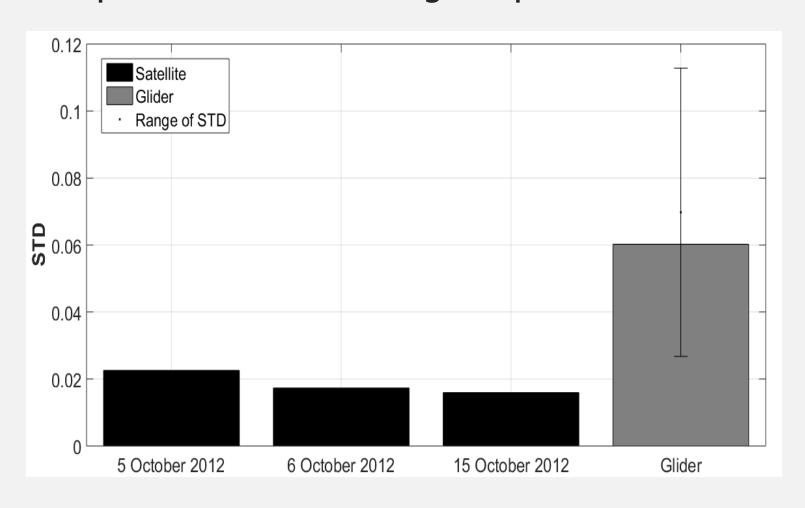
Investigating scales of chl-a and SST patchiness



- Slope (p) is the measure of spatial heterogeneity.
- Phytoplankton are equally patchy in spring and summer.
- Higher variance in summer than spring due to higher maximum biomass.
- Phytoplankton are patchier than SST due to growth.

Results – Spatial Analysis

Comparison of satellite and glider patchiness



- The glider captured more variability than the satellite in spring.
- If gliders were not behaving in a quasi-Lagrangian manner, the glider data would look similar to the satellite.
- A 1/3 of the glider variability is caused by spatial variability, the remainder occurs from local adjustments in time.

CONCLUSION

- Chl-a temporal variability occurs at submesoscales for spring and summer, however they are caused by different forcing mechanisms.
- Chl-a needs to be subsampled at set frequencies (less than 10 days) in both spring and summer to resolve to chl-a variability.
- Chl-a is patchier at small length scales for spring and summer.
- Chl-a is more patchy than SST.
- The glider is mainly measuring chl-a adjustments in time rather than in space.

