

European Gliding Observatories Network (EGO) Action ES0904

WG2 Glider vehicle, sensors, and "gliderports" infrastructures

Lucas Merckelbach, HZG, Germany Carlos Barrera, PLOCAN, Spain

Sensors

Parameters:

- Hydrographic (temperature, salinity and density)
- Optical (suspended matter, chlorophyll a, turbidity, oxygene, nutrients, hydrocarbon, CDOM, ...)
- Acoustic (currents, noise from physical processes or biology)
- Physical (turbulence, waves)
- •

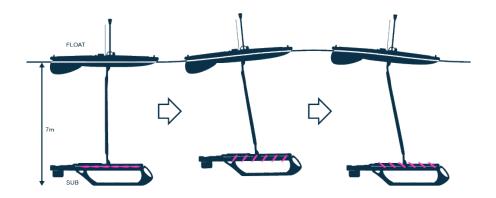
Sensors

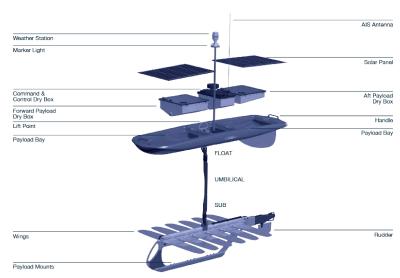
The CTD is the most used sensor on gliders, but still plagued with unsorted issues:

Workshop October 2013 to gather experts within the community

- Pumped CTD vs. free-flush CTD
- Thermal lag
- Sensor mismatch
- Sensor timings

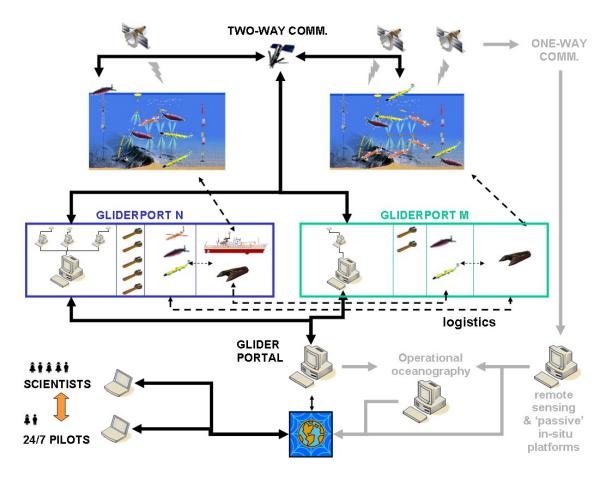
Glider technology





	SeaExplorer	Seaglider	Spray	Slocum
Wingspan	56,5 cm	100cm	110cm	120cm
Volume change	1.0L	0.84L	0.9L	0.45L
Nominal Speed	0.5 m/s	0.25 m/s	0.25 to 0.35 m/sec	0.3 to 0.4 m/sec
Dimensions	L=290cm Diam=24cm	L=330cm Diam=30cm	L=200cm Diam=20cm	L=215cm Diam=21cm
	Mass=59 kg	Mass=52 kg	Mass=51 kg	Mass=52 kg
Ballast Efficiency	60 (25)% efficient @ 700 (100) dbar	40 (8)% efficient @ 1000 (100) dbar	50 (20)% efficient @ 1000 (100) dbar	50% efficient @ 200 dbar
Payload capacity	Dry section: 5.5Kg + Wet section: Up to 3Kg	4Kg	3.5kg	3 to 4 kg
Puck ports	4	0	0	4
Operating	700m	1000m	200-1500m	200m or 1000m
Batteries	8.6MJ, Rechargeable	10MJ, Primary Lithium	13MJ, Primary lithium	8MJ Primary alkaline Or Lithium
Refueling cost	Free	1375\$	2850\$	~1000\$ (Alkaline) ~10000\$ (Lithium)
Origin	Europe (France)	US	US	US

Wave glider



AND TECHNOLOGY

Sail buoy (PLOCAN)

Concept of glider ports

Glider ports

Description:

Glider ports are facilities that

- Provide a means for glider preparation
- Provide a means for glider piloting
- Handle data (near-real time and post-mission)
- Provide a means deployment and recovery
- Play a role in sensor or vehicle development
- Provide access to sensor calibration setups

... or a subset of these attributes.

Glider lab at HZG

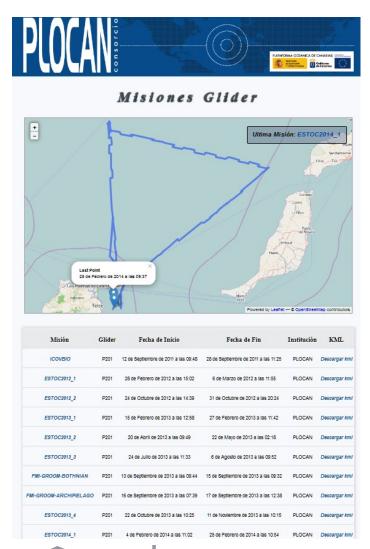
- Ballast tank
- Workbench
- Crane
- Storage

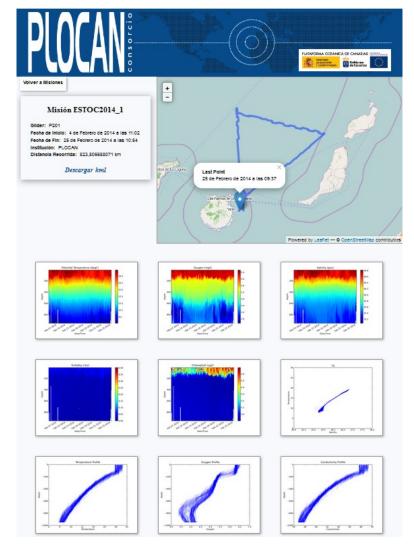
Special facilities: a pressure chamber at SOCIB

Special facilities: sensor calibration facilities

(in-situ) sensor calibration Frame (HZG)

laboratory CTD calibration setup (OGS)




Support for deployment and recovery Research vessels (PLOCAN)

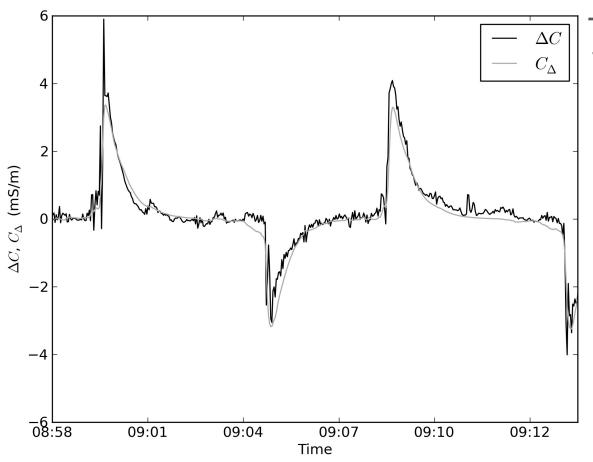
Data visualisation (example from PLOCAN)

Training facilities

Where do we find gliderports in Europe?

Not shown are facilities in:

- · Cape Verde
- · Chile
- · Australia
- ·USA



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Sensors (CTD)

Example of where it works for a pumped CTD:

Thanks to totally mixed salinity

Sensors (CTD)

- Pumped CTD suffers from smaller thermal lag effects.
- Strong/sharp thermoclines (like in North Sea) pose new issues due to timing mismatches between sensors.
- Only to some extent correctable.
- Database with a wide range of different C-T profiles.

