

An Optimization-Based Path Planner for Underwater Gliders

Josep Isern González, Daniel Hernández Sosa, Enrique Fernández Perdomo, Jorge Cabrera Gámez, Antonio C. Domínguez Brito, Víctor Prieto Marañón, Antonio Ramos, Josep Coca and Alexander Redondo

Contents

- Introduction
- Other Path Planning Algorithms
- Path planner based on optimization
- Experimental results
- Conclusions

Glider Path Planning Problem definition Non-comprehensive list of Navigation Problems

Introduction

Glider Path Planning

- Find advantageous routes to reach a waypoint
 - Time
 - Energy → Autonomy
- Ocean Currents
 - Strong (>0.5m/s)
 - Eddies
 - Temporal variability
 - ROM: ESEOO Project
 - 1/20°
 - 2D+1h or 3D+day mean

Puertos del Estado

e-mail: info@siani.es · www.siani.es

Problem definition

Path planning with temporal horizon

- Minimize the remaining distance to the target
- Use of ROM's maps with forecast ocean currents
- Time-varying scenario
- Computational cost limitations to surface period of glider

Path planning to reach a waypoint

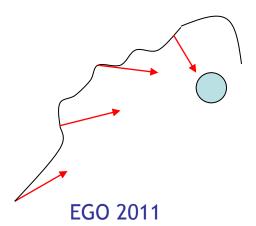
- Try to minimize the time to reach the target
- If long trajectories → Historic ocean currents maps
- Quasi-stationary scenario

Non-comprehensive List of Navigation Problems

- Optimal Departure-time
 - Deployment
- Track Evolving features
 - HABs
- Multiple Vehicle Coordination
 - Formation
 - Navigation w/ constraints
- Hold Track
 - Data assimilation
 - Follow line or curve trajectory
- Gathering
 - Recovery

Introduction
Direct to goal
RRT
A*
Constant-Time Surfacing A*

OTHER PATH PLANNING ALGORITHMS

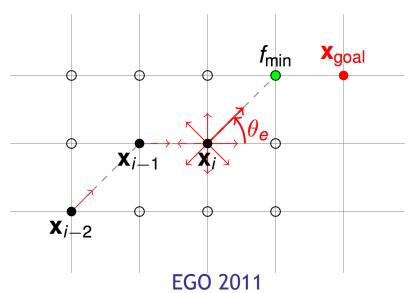


Direct to goal

- Trivial solution
- At each surfacing the next bearing is computed as the direction of the goal point.
- Limitations:
 - Drift significantly in presence of strong currents

RRT (Rapidly-exploring Random Tree)

- Random generation of test cases.
- Build up an exploring tree with nodes that tend to cover the search space
- Tree is generated both from start and from end point
- Limitations:
 - No applicable in time-varying scenario.
 - No guarantee of finding a route and less an optimal trajectory.



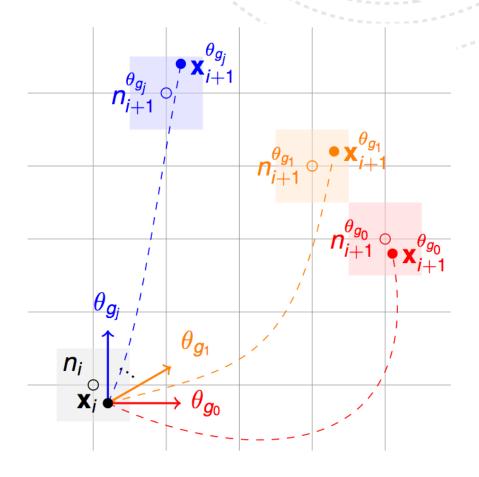
Adaptation to the glider problem

- Constrained motion model

Limitations

- Uniform grid discretization of the search space
- Non-constant time stints

e-mail: info@siani.es · www.siani.es


Constant-Time Surfacing A* (CTS-A*)

• Features:

- Constant-Time Surfacings
- Bearing set
- Trajectory integration
- Continuous locations

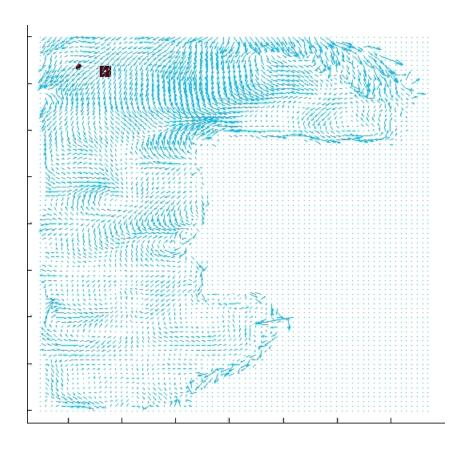
Limitations

- Bearing discretization
- High computational cost

- Path planning with temporal horizon
- Path planning to reach a waypoint

Path planner based on optimization

Temporal horizon


- Use of optimization functions
 - Levenberg-Marquardt, SQP, Quasi-Newton ...
- Parameters are the bearings of each surfacing
 - The number of parameters is known
- Try to minimize the distance to the goal point
- Initial guess:
 - Start to goal angle
 - Direct to goal results

Optimal trajectory simulation for a 3-days with time-varying currents.

- Glider trajectory
- Start point
- Goal point
- Bearings estimated in each surfacing
- Ocean currents
- Ocean currents that exceed glider velocity

- Path planning with temporal horizon
- Path planning to reach a waypoint
- Navigation problems

Experimental results

Temporal horizon Experiment conditions

- Simulations using Matlab®
- Ocean current maps from the ESEOO model
 - gives outputs for each hour structured in four 24h
 sets from now-cast to D+3 predictions
- Stint duration: 8 hours
- 25 cases analyzed

Temporal horizon Comparative tests

Measures:

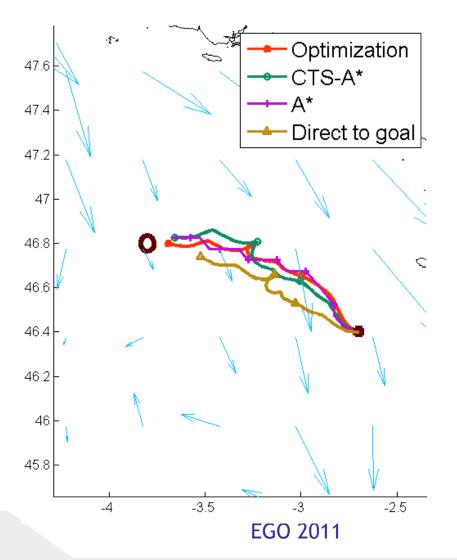
- **Path quality:** remaing distance from the last surfacing to the goal point
- Computational cost: Using Intel® Core™ 2 Quad processor running at 2.5 Ghz.
- Simulation of glider behavior
 - Combining the commanded bearing with the current model data and the nominal glider velocity
- Methods setup
 - A* and CTS-A* grid size \rightarrow 1/20°
 - CTS-A* → divisions of 20° in the bearings rose

Temporal horizon Mean of remaining distance to reach the target

Method	Distance (kms.)
Optim	50.6
CTS-A*	55.8
A*	62.7
Direct to goal	65.4

Temporal horizon Mean of computational time

Method	Time (seconds)
Optim	8.1
CTS-A*	38.4
A*	342.4
Direct to goal	<0.1



e-mail: info@siani.es · www.siani.es

Temporal horizon Comparative of trajectories

- Ocean currents
- Ocean currents that exceed glider velocity

Glider speed = 0.4 m/sDistance = 95.3 km.

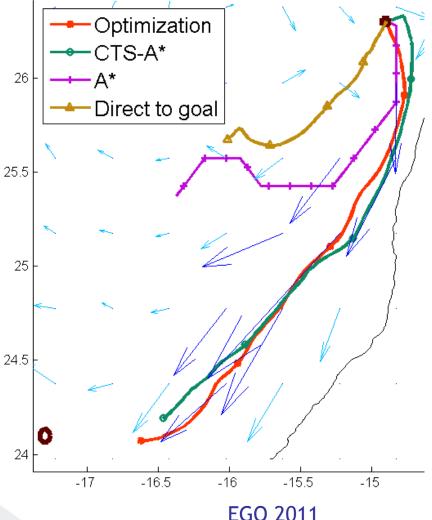
Km. remaining to reach the target:

Optimization: 8.4

CTS-A*: 11.2

A*: 9.9

Direct to goal: 22.5



Temporal horizon Comparative of trajectories

- Ocean currents
- Ocean currents that exceed glider velocity

Glider speed = 0.4 m/s

Distance = 344.6 km.

Simulation: 4 days

Km. remaining to reach the

target:

Optimization: 68.9

CTS-A*: 85.1

A*: 169.4

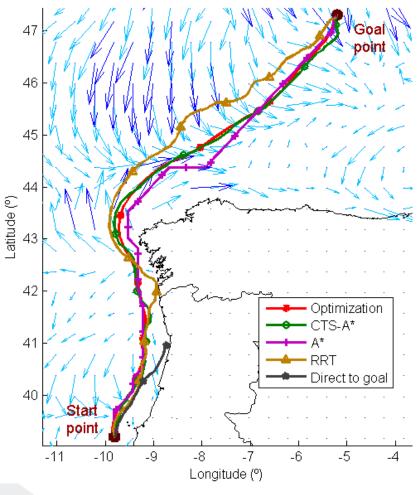
Direct to goal: 217.6

To reach the waypoint Experiment conditions

- Simulations using Matlab®
- Ocean current maps from the ESEOO model
 - static map
- Stint duration: 8 hours
- 20 cases analyzed

To reach the waypoint

Mean of number of days to reach the goal


Methods	Mean of all cases	Mean of selected cases
Direct to goal	No arrival in the 35% of cases	18.0
RRT	No arrival in the 5% of cases	17.7
A*	18.9	17.1
CTS-A*	18.7	16.9
Optimization	18.4	16.7

To reach the waypoint Comparative of trajectories

- Ocean currents
- Ocean currents that exceed glider velocity

Glider speed = 0.4 m/s. Distance = 974 km.

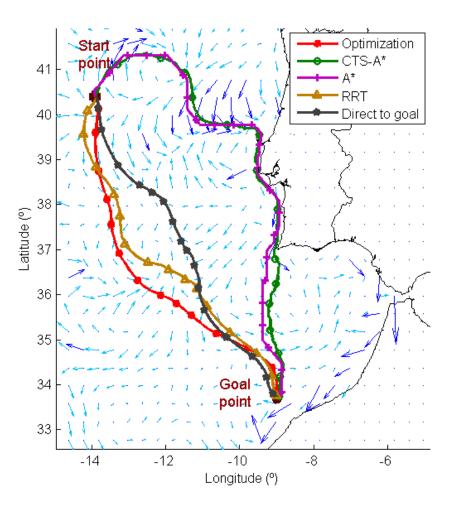
Num. days of paths:

Optimization: 26.3

CTS-A*: 27.2

A*: 27.3 RRT: 31.3

Direct to goal: No arrival



To reach the waypoint Comparative of trajectories

- Ocean currents
- Ocean currents that exceed glider velocity

Glider speed = 0.2 m/s.

Distance = 861.9 km.

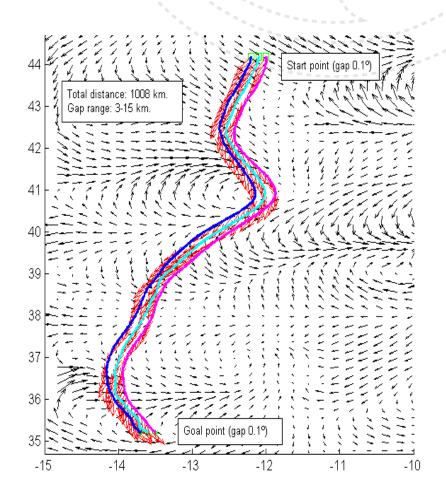
Num. days of paths:

Optimization: 47.4

CTS-A*: 50.0

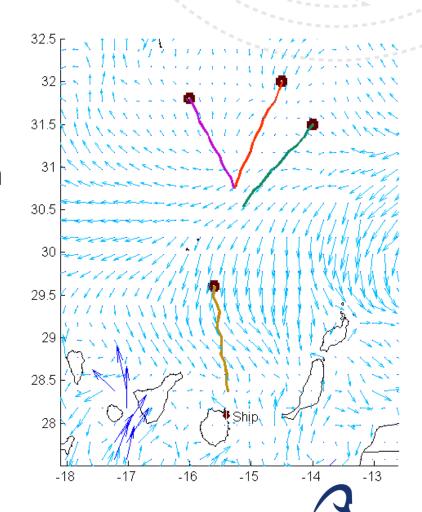
A*: 49.6 RRT: 49.7

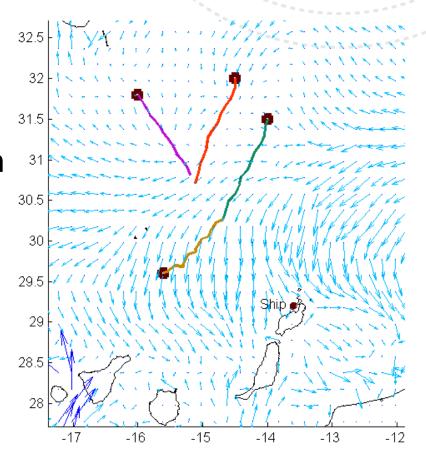
Direct to goal: 53.8



35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

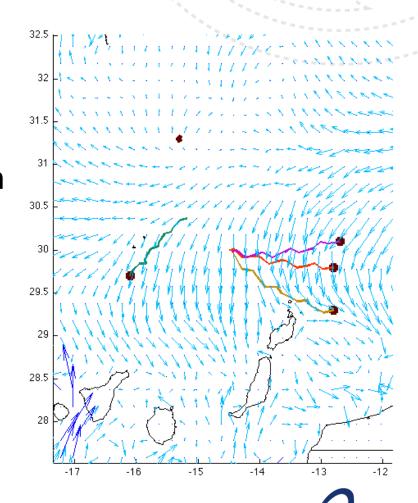
- Optimal Departure-time
- Track Evolving features
- Multiple Vehicle Coordination
- Hold Track
- Gathering





- Optimal Departure-time
- Track Evolving features
- Multiple Vehicle Coordination
- Hold Track
- Gathering

- Optimal Departure-time
- Track Evolving features
- Multiple Vehicle Coordination
- Hold Track
- Gathering



- Optimal Departure-time
- Track Evolving features
- Multiple Vehicle Coordination
- Hold Track
- Gathering

Conclusions

e-mail: info@siani.es · www.siani.es

Conclusions

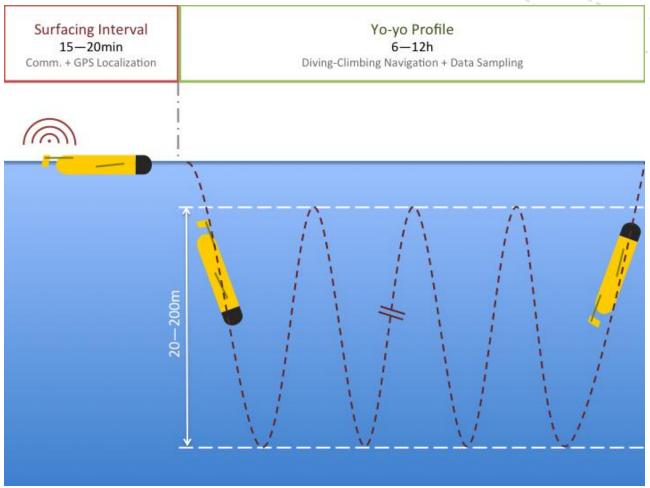
- Novel path planning algorithm for gliders based on optimization
 - Reflects accurately the vehicle operation pattern
 - Offers promising results on realistic simulations
 - Allows re-planning in real conditions
 - Adaptable to plan in different practical situations:
 - Cover a set of waypoints (predefined trajectory)
 - Chase mobile objects
 - Coordinate movements of a fleet
- Comparison with other methods
 - Gives better performance (quality path and computational cost) than other approaches

Future works

- Incorporate 3D current data
 - 3D Glider motion model
- Adaptation of this method to coastal scenarios where obstacles are found.
- Validate the robustness of the method
 - Glider missions

Thank you for your attention!

Questions, please?



e-mail: info@siani.es · www.siani.es

Underwater gliders

To reach the waypoint

- Problem: The number of stints is unknown
- Algorithm: pathplanner(p_{ini}, p_{end}, M, G, d_{th})
 - 1. $p = p_{ini} \rightarrow Initialized$ to start point
 - 2. B = 0
 - 3. $d = distance(p; p_{end}) \rightarrow Distance remaining to target$
 - 4. while $d > d_{th} do$
 - 5. $n = numbearings(p; p_{end}; M; G) \rightarrow Bearings to goal$
 - 6. Bn = inibearings(p; p_{end} ; n) \rightarrow Init. of new bearings
 - 7. B0 = [B; Bn] \rightarrow combine bearings
 - 8. [B; p] = optimize(B0; p_{ini} ; p_{end} ;M; G)
 - 9. $d = distance(p; p_{end})$
 - 10.end while
 - 11.return B

Gliders path planning

Glider: Low surge speed (~0.4 m/s)

High influence of ocean currents

Path planning is necessary

Use of Regional Oceanic Models (ROM's)

Ocean Currents

- ESEOO [Sotillo, 2007]: POLCOMS model
- Buoys network, fresh water (river) discharges, ...
- Output
 - 2D + 1hour or 3D + day means

Gliders

- Autonomous Underwater Vehicle (AUV)
- Large Autonomy
 - Saw tooth pattern (dive, climb)
 - Surfacing
 - Communicate data
 - Receive bearing (next waypoint)
 - Low speed

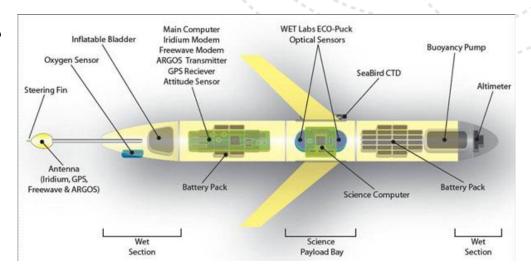
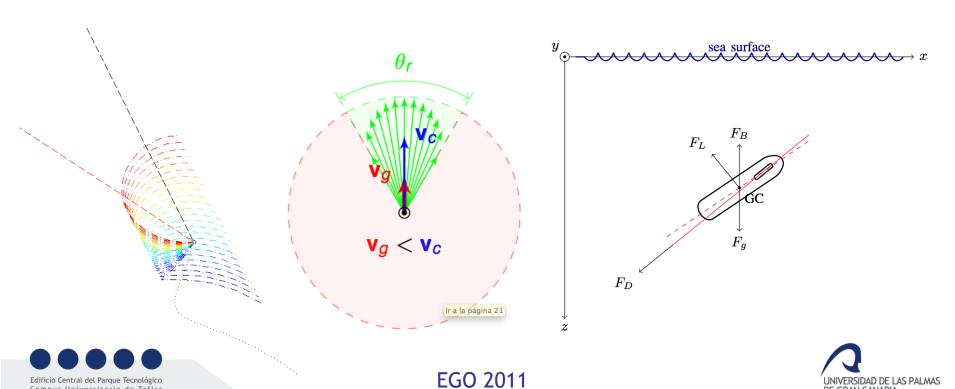


Figure courtesy of Integrated Marine Observing System (IMOS)

RU27 trans-Atlantic mission



35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

Kinematic Motion Models

- Vector composition + Trajectory integration
- Constrained motion model (feasible headings)
- Force balance (3D bouyancy model)

