Contents

Nitrate

Why measuring Nitrate?
Measuring Nitrate with absorption spectrum
Projects Involved
Sampling strategy
Integration on Slocum glider
Calibration

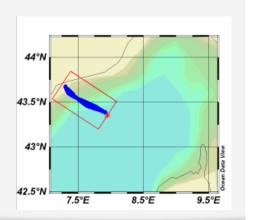
Jellyfish

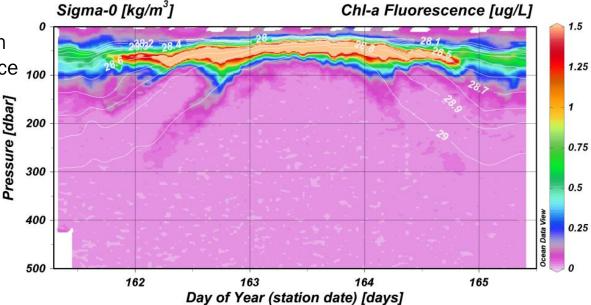
Embedded vision system for jellyfish detection Camera board and lightning system Realization of first prototype First pictures Miniaturization of UVP

Why measuring Nitrate?

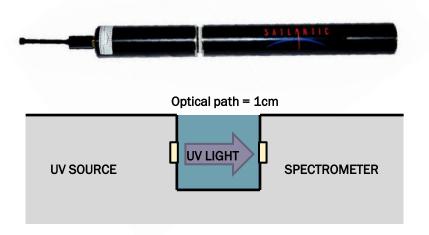
NO3⁻ is a key phytoplankton nutrient

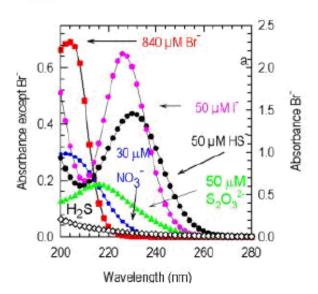
Limiting factor of primary production in much of the Ocean



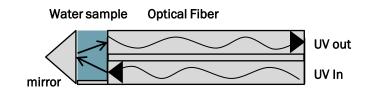

Nitrate injection from deep water control the phytoplankton growth

Integration on autonomous platforms:


• cross-analysis with CHI-a fluorescence 100



Measuring Nitrate with absorption spectrum


SUNA (SATLANTIC)

ISUS (SATLANTIC)

NO3- absorption band: 200-260 nm

Integration on autonomous platforms: Projects involved

Profiler floats: PRONUTS (LOV, IFREMER-TSI, Station- Roscoff, LMGEM)

One prototype with external mounted SUNA will be deployed soon Deployment March 2011

Gliders: VASQUE (ACSA, IFREMER, ACRI, COM, CEDRE, LOV)

- Hybrid glider VASQUE in development
 Integration of SUNA or ISUS considered
 Deployment: 2012-2013
- Integration on Slocum Glider by Teledyne Webb Research

 Deployment March 2011

Sampling strategy

SUNA consumption in continuous mode > 6W !!

In comparison 3 Wetlabs EcoTriplets in continuous mode < 2.5 W

Necessity to operate the sensor in switched mode ON/OFF.

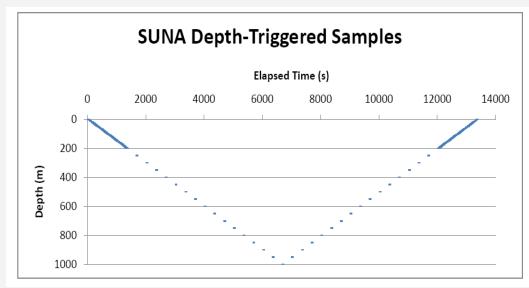
1 sample = 7 s boot time + 1 dark frame + 5 measurements = 10 seconds

Number of samples	SUNA on time	Total time	Duty cycle	Average consumption
60	600 s	6600 s	10%	600 mW

The average consumption is the same as an ECO Triplet

Sampling strategy (2)

Definition of different zones for sampling frequency


- 0 200 m : sample every 4 m
- 200 500m : sample every 50 m

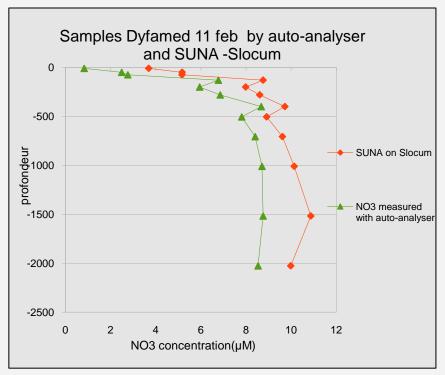
Acquisition mode different for each sensor

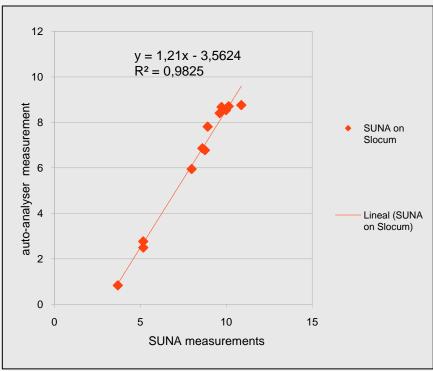
- SUNA: Discontinuous mode
- CTD, Oxygen and fluorometers: continuous mode

Depth-triggered instead of time triggered

Intersample_time re-calculated from intersample_depth every 4s

From Webb Research simulation


Originally scheduled February 2011:


- Pre-bloom deployment of a Slocum Glider, and a profiler float Pronuts at Boussole Site
- Water sampling and Nitrate concentration analysis
- Intercalibration of sensors

- No datas from the SUNA sensor on Slocum
- PRONUTS float deployment delayed
- deployment scheduled end of March 2011

Sensor calibration

Heloise Lavigne, pers. Com.

Damien Malardé, Ifremer Brest ISUS and SUNA dependance on temperature, salinity and turbidity

Development of an embedded vision system for Jellyfish detection

Embedded vision system on autonomous platforms

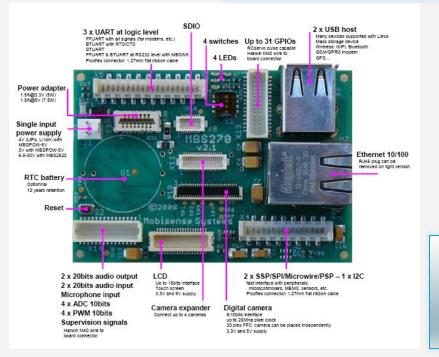
Smart Camera + flash light

- Mononochrome images/ Monochrome flashing
- Observed volume : up to 1m³
- Frame rate: 0.1 to 3 images/sec

Shape recognition algorithm

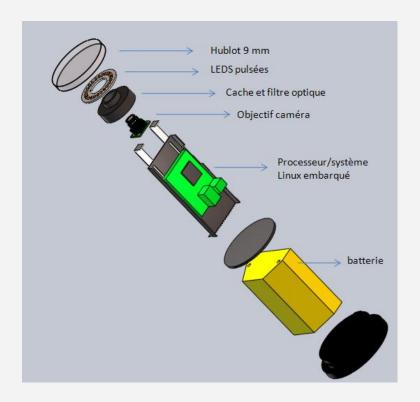
- Absence/presence of Jellyfish
- ROI saving on media card
- jellyfish density estimation

Integration on autonomous platforms (gliders, profiler floats)


- low consumption: <1.5 W in continuous mode
- mechanical design: puck like design
- data transfer from sensor to glider

Components

- Aptina CMOS sensor monochrome
- resolution wvga 0.3 Mpixels
- low power
- 1.3 Mpixels soon

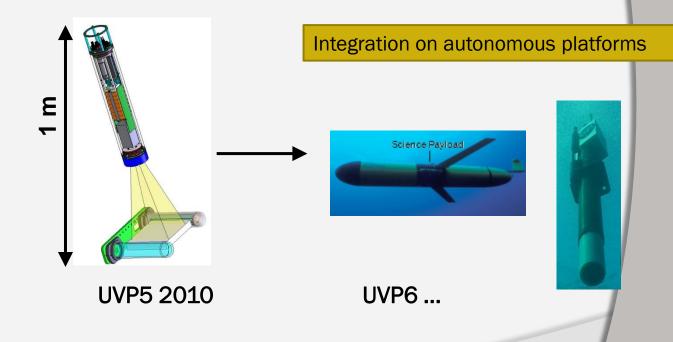

- •LED Luxeon Rebel
- red: 610-630 nm
- 12 with optics or 24 without

- Mobisense board MBS 270
- processor Marvel Xscale 520 MHz
- low consumption < 1W
- Embedded Linux operating system

December 2010: prototype

• Next step: integration on a profiler float for next summer...

First pictures...


Miniaturization of UVP

Underwater Video Profiler: Gaby Gorsky, Marc Picheral, Lars Stemman...

In-situ imaging system for size particles analysis and Zooplankton recognition.

UVP3 1992

Thank you for your attention

