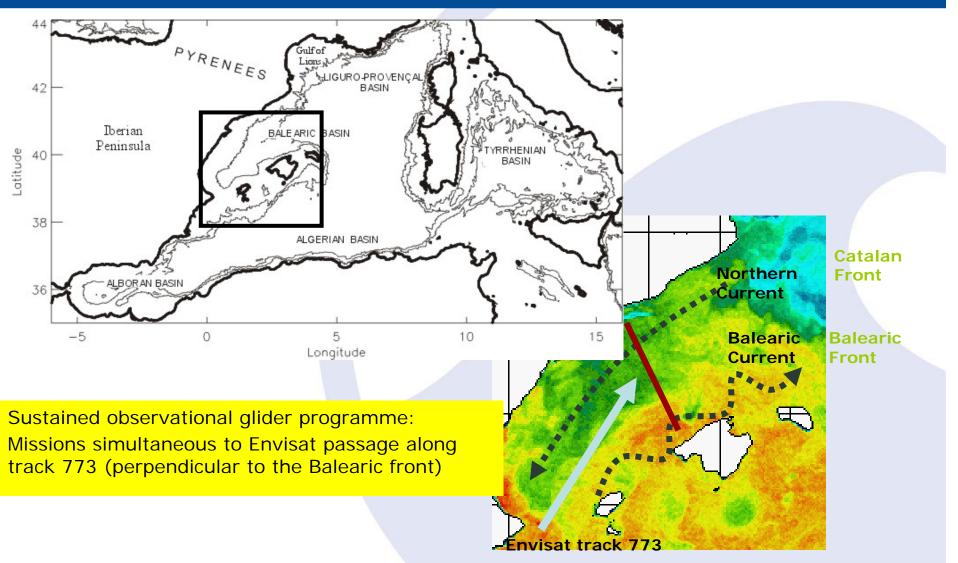


Multi-sensor approach towards coastal ocean processes monitoring

A. Pascual, J. Bouffard, <u>S. Ruiz</u>, R. Escudier, B. Garau, M. Martínez, E. Vidal-Vijande, Y. Faugère, G. Larnicol, G. Vizoso, and J. Tintoré

IMEDEA(CSIC-UIB) · TMOOS Dept · Mallorca (Spain) CLS · Space Oceanography Division · Toulouse (France)


Outline

- Objectives
- Area of study and data sets
- Methodology
- Results: April 2008 mission
- Summary and Future Work

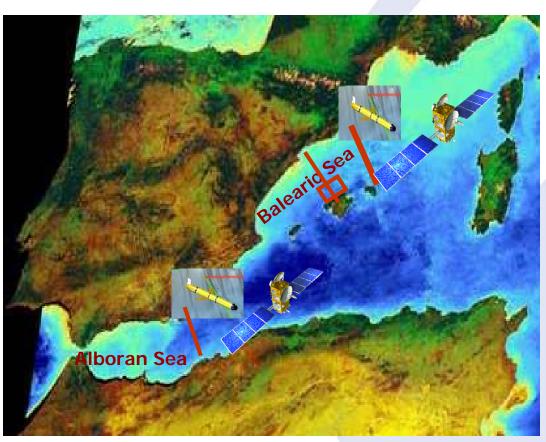
Area of Study: Balearic Sea

Objectives

SPECIFIC OBJECTIVES:

- Characterization of coastal fronts combining altimetry and glider data.
- Explore the use and limitations of altimetry data in the coastal area.

Sustained observational program along altimetry track


Framework:

ECOOP/ MyOcean EU project / OSTST proposal

Glider Missions Background along altimetry tracks

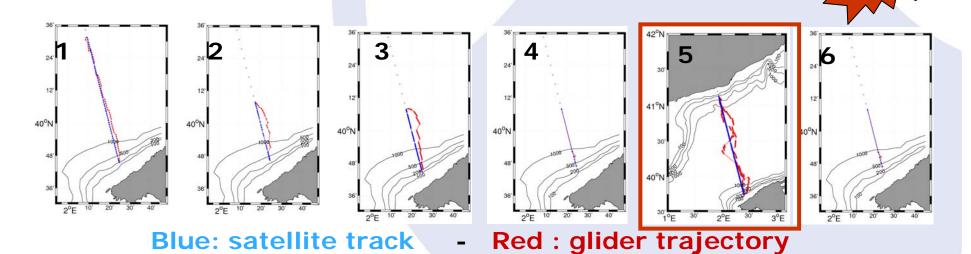
6000 full CTD casts + oxygen, chlorophyll turbidity (180 m)

ENVISAT:

 Balearic Sea: T-773.
 Sustained glider observations (every 70 days): 6 missions up to now

JASON-1/2:

- Alboran Sea: T-172 (July 2008). Cycles Jason-2: 0 & 1
- Balearic Sea: T-70 (August 2008). Cycles Jason-2: 4 & 5


JASON-1 (new orbit):

 Balearic Sea: T-70 (May 2009). SINOCOP experiment: Great challenge: 2 gliders covering an area of 50 x 40 km2: 3 missions

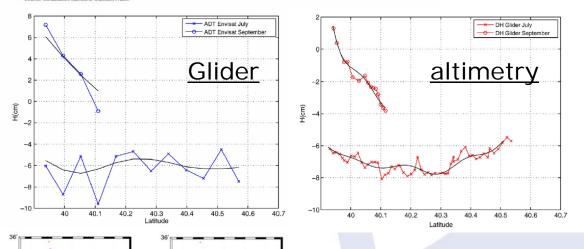
The Balearic Front: gliders missions

N. sampling	Dates	Envisat Cycle	Comments			
1	6-13 Jul 2007	59	Complemented with CTD from oceanographic cruise. Z: 0 - 600 m H resolution: 5-12 Km	7		
2	14-17 Sep 2007	61	-			
3	23-27 Nov 2007	63	-			
4	1-5 Feb 2008	65	Performed with CTD due to a failure of the glider	1		
5	7-23 Apr 2008	67	Mainland coast reached +3 missions			
6	20-24 Jun 2008	69	in 2009	>		

First results

Journal of Marine Systems 78 (2009) \$3-\$16

40°N


Contents lists available at ScienceDirect

Journal of Marine Systems

journal homepage: www.elsevier.com/locate/jmarsys

Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data Simón Ruiz ^{a, a}, Ananda Pascual ^a, Bartolomé Garau ^a, Yannice Faugère ^b, Alberto Alvarez ^a, Joaquín Tintoré ^a
^a (MEDEA (CSC-418), Mollora, Spoin
Folloter Localisation Starfilles, Toulous, France

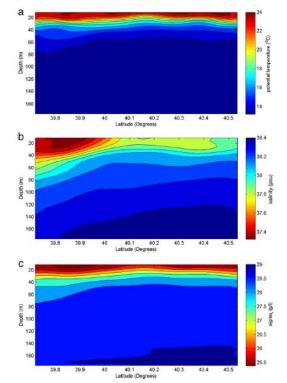


Fig. 3. Optimal Statistical Interpolated fields of temperature (°C), salinity (PSU) and density (sigma-t) from the glider mission, July 2007.

- Only 2 missions (2007)
 - Standard altimetry AVISO products (1 Hz)

Data Sets

Envisat

- Along track SLA (1 Hz / 20 Hz)
 Horizontal resolution: 7 km / 500 m
- Corrections:

Tides, HR HF barotropic motion (DAC), ...

- Gridded products
- MDT: Mean Dynamic Topography (Rio et al. 2007)
- -ADT = SLA + MDT

Glider

- Variables:

P, T, S, oxig., chl., turb.

Depth averaged GPS currents

- Vertical extension:

10-180 m

- Horizontal resolution: ~0.5 km

Situation:

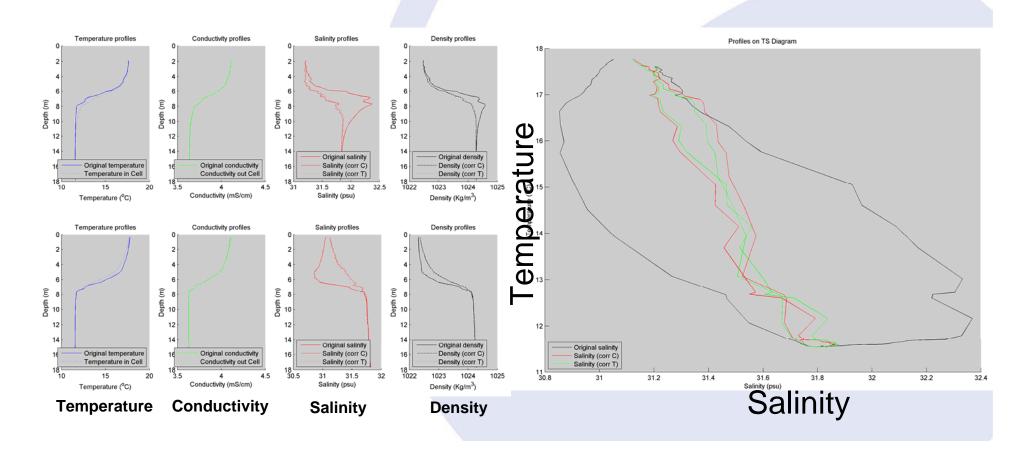
- Temperature sensor measures sea water temperature outside of the conductivity cell.
- Conductivity sensor measures sea water conductivity inside of the conductivity cell.
- Conductivity cell walls store heat, warming up in-cell water when moving to cooler waters, and cooling it down when moving to warmer waters.
- Conductivity is affected by temperature.

Result:

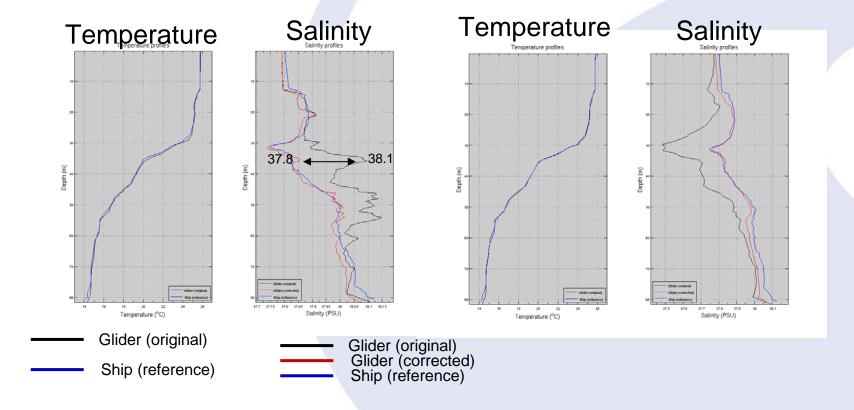
Salinity is computed from out-cell temperature and in-cell conductivity. Salinity present important errors on strong temperature gradients (thermocline).

- Previous works have studied this problem and proposed techniques to mitigate it:
 - Thermal Inertia of Conductivity Cells:
 Observations with a Sea-Bird Cell (Lueck & Picklo, 1990).
 - The Correction for Thermal-Lag Effects
 in Sea-Bird CTD Data (Morison et al., 1994).
 - And many more references...
- (Slocum) gliders arise new problems that make difficult to apply traditional techniques without modifications:
 - CTD is not pumped. Therefore, flow speed depends on glider surge speed.
 - CTD sampling has low temporal resolution (~0.5 Hertz).
 - CTD sampling interval is not perfectly regular.

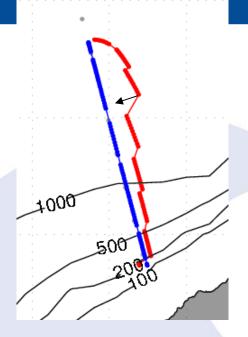
- Some generalizations to correction techniques and their parameters estimation methods are under development to improve glider CTD data quality.
- Time "constant" and magnitude are no longer constants dependent on CTD sensor, but also related to glider speed and attitude.

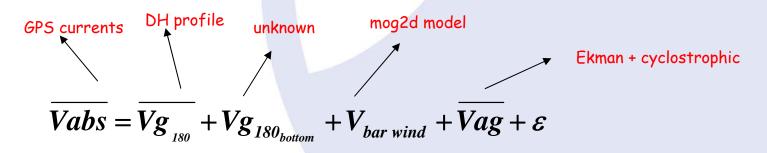

A proposed methodology (Garau et al., 2009, in preparation)

- Estimation of their relation is performed through a minimization process:
 - Minimum area between two consecutive glider profiles in the TS diagram (assuming same water).
 - Minimum area between glider profile and CTD cast (ground truth).


- Glider downcast vs. glider upcast, promising results:
 - Salinity spikes reduced.
 - TS hysteresis reduced

- Glider vs. CTD cast, promising results:
 - Salinity spikes reduced.
 - Better profile fitting.

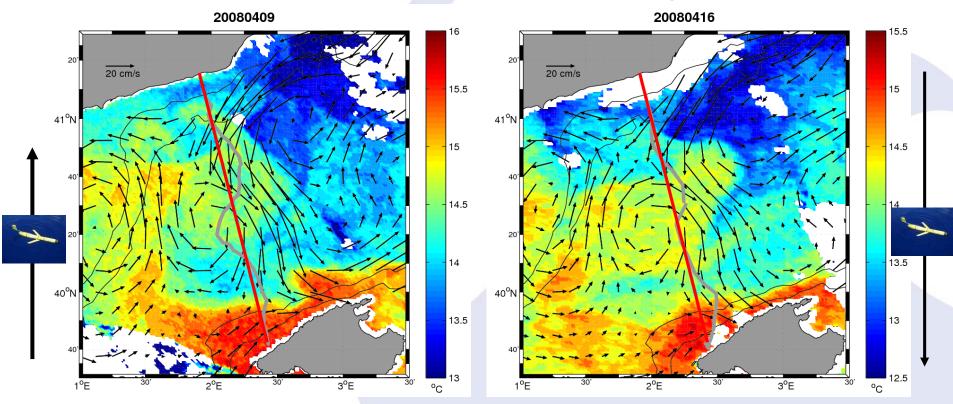




Glider Data Processing

- Dynamic height (DH) computed from P, T, S profiles with a ref. level 180 m.
- Projection of the glider observation position onto the closest track point.
- Different filters (lanczos, loess, Powen-Leben) are used for the computation of surface geostrophic velocities (Vg surf 180) from DH.
- Computation of absolute geostrophic currents by combining Vg surf 180 and depth averaged GPS currents:

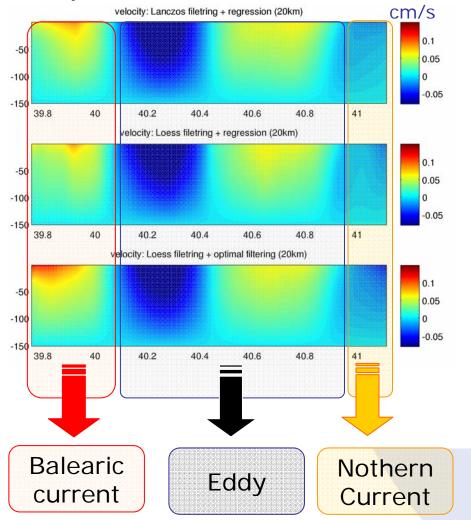
$$Vg_{abs} = Vg_{surf_{180}} + Vg_{180_{bottom}}$$

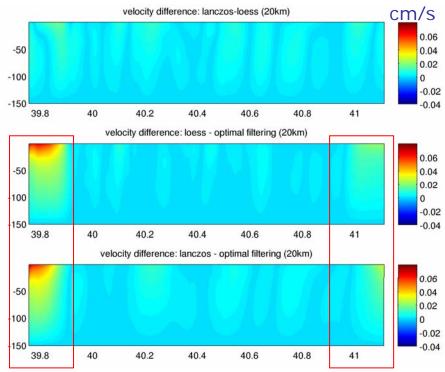

denotes vertical average over the upper 180 m (glider vertical extension)

April 2008 mission: an intense eddy

Sinoptic view from remote sensing data

Color: SST. Source: ICM.


Vectors: Absolute geostrophic currents from DT merged altimeter gridded fields. Source: AVISO.

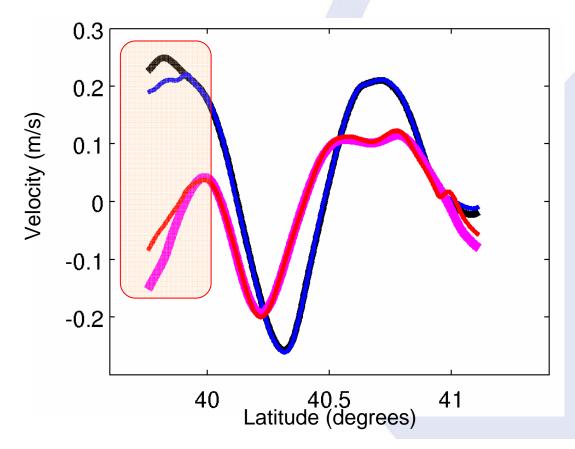


Glider results: geostrophic velocity calculation

Slope calculation: standard vs Powell et Leben (2004)

- Main dynamical patterns both observed with the 3 methods
- Significant differences in the balearic and Iberic coastal zones (resp 6 and 3 cm/s)

(Bouffard et al., JGR, to be submitted)



Glider vs altimetry currents

1 Hz data

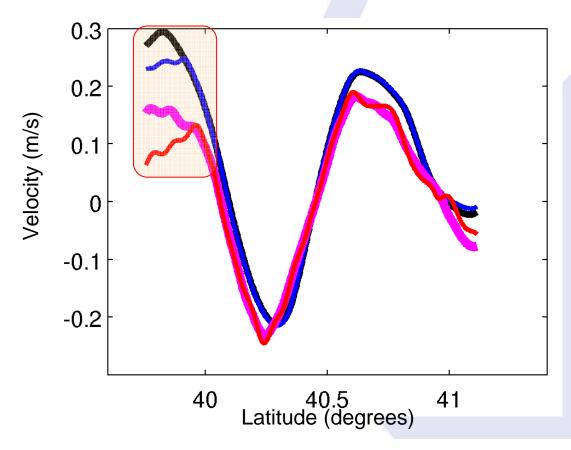
Altimetry **VS** Glider

 Good agreement but huge disagreements (>30cm/s) in the Balearic coastal zone and less amplitude in the glider.

- Correlation: 0.71

- Std diff: 10.4 cm/s

- Err var: 50 %



Glider vs altimetry currents

20 Hz data

Altimetry VS Glider

- P&L filtering impacts (black and magenta) only in the 20 km coastal band.
- 20 Hz improves the overall agreement between altimetry and glider velocities.
- •Disagreements in the Balearic coastal zone are still significant but smaller than with 1 Hz.

- Correlation: 0.97

- Std diff: 4.0 cm/s

- Err var: 5 %

Comparison Glider-altimetry

method 1: Statistics

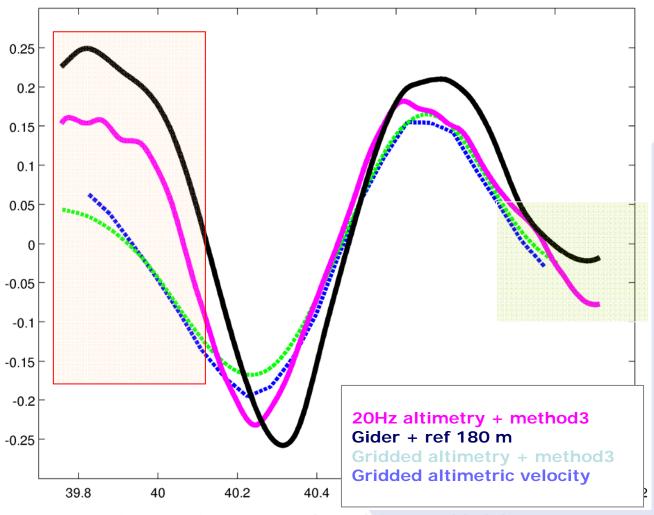
Altimetry <u>1 hz,</u> Glider & MDT: 20 km filtered SLA, standard slope calculation		CTD surf 5.5 cm		CTD surf + ref 180 m 14.6 cm		CTD surf + ref 180 m (correted Ekman + barotrope) 14.7 cm		
		corr	Rms diff	corr	Rms diff	corr	Rms diff	
	Alti 12.2cm	1	0.65	9.6	0.56	12.9	0.55	13.0
		2	0.28	11.9	0.46	14.8	0.44	15.4
		int	0.58	10.1	0.56	12.7	0.55	13.0
	Alti + MDT old 9.2 cm	1	0.80	5.7	0.67	11.0	0.68	10.8
		2	0.59	7.4	0.69	11.4	0.68	12.1
		int	0.76	6.2	0.71	10.4	0.70	10.5
	Alti + MDT new 8.1 cm	1	0.73	5.6	0.60	11.8	0.61	11.6
		2	0.78	5.2	0.73	11.2	0.73	11.7
		int	0.72	5.6	0.65	11.2	0.65	11.2

- Temporal interpolations : improvement between 1 and 10 %
- Ekman and barotrope corrections: small negative impact of (<3%)
- MDT: Improvement of 10 and 16 % for respectively MDT_new and MDT_old

Comparison Glider-altimetry

method 1: Statistics

Altimetry 20 hz, Glider & MDT: 20 km filtered SLA, standard slope calculation		CTD surf 5.5 cm/s		CTD surf + ref 180 m 14.6 cm/s		CTD surf + ref 180 m (correction Ek+ barot) 14.7 cm/s		
		corr	Rms diff	corr	Rms diff	corr	Rms diff	
	Alti	1	0.86	9.8	0.82	8.6	0.82	8.9
	14.2 cm/s	2	0.57	11.9	0.70	11.5	0.7	11.9
		int	0.81	10.3	0.83	8.3	0.82	8.7
	Alti + MDT old 12.2 cm/s	1	0.97	6.8	0.92	5.9	0.92	5.8
		2	0.84	8.0	0.90	7.1	0.89	7.7
		int	0.95	7.1	0.96	4.6	0.95	4.8
	Alti + MDT new 11.3 cm/s	1	0.86	7.0	0.82	8.6	0.82	8.4
		2	0.94	6.2	0.89	7.7	0.89	8.0
		int	0.89	6.9	0.87	7.4	0.87	7.3

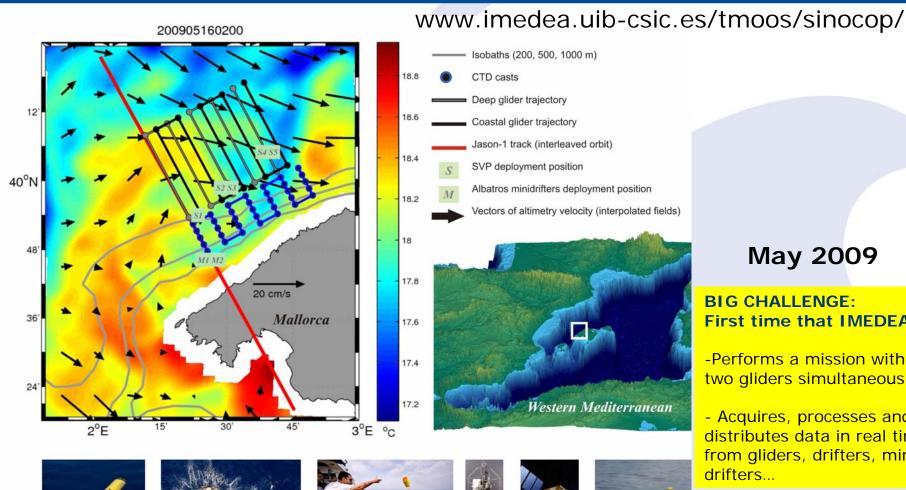

- Temporal interpolations : improvment between 6 and 10 %
- Ekman and barotrope corrections: small negative impact of (<5%)
- MDT: Improvment of 6 and 19 % for respectively MDT_new and MDT_old

Comparison Glider-altimetry

comparison with gridded products

- Less amplitudes in the gridded produtcs
- Huge differences in the balearic coastal zone
- Similar performences in the lberic coastal zones.
- Less coastal data in the gridded products

Along track HF more adapted than gridded data


Summary & Future Work

- Gliders are useful platforms for exploring limitations of coastal altimetry.
- New methodology and data processing in the velocity computation improves the altimetry-glider comparisons.
- The impact of usig HF along track altimetric data is tremendous in the coastal zone (cor = 0.97, error variance = 5%).
- Future work:
 - Dedicated mean dynamic topography
 - Multi-sensor approach experiments
 - Data assimilation into numerical models to better understand coastal and mesoscale dynamics (collaboration with J. Zavala – Univ. Rutgers).

Multi-sensor approach: SINOCOP sampling

May 2009

BIG CHALLENGE: First time that IMEDEA:

- -Performs a mission with two gliders simultaneously.
- Acquires, processes and distributes data in real time from gliders, drifters, minidrifters...

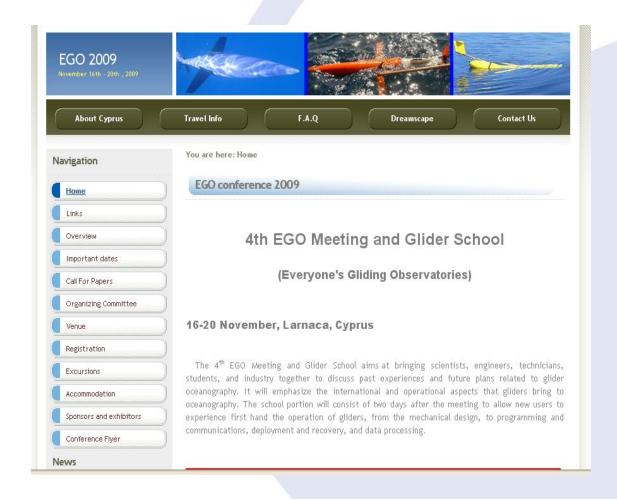
Coastal

SVP Glider Drifter

Albatros Mini-drifter

CTD

Remote Sensing



Deep Glider

Thank you for your attention

