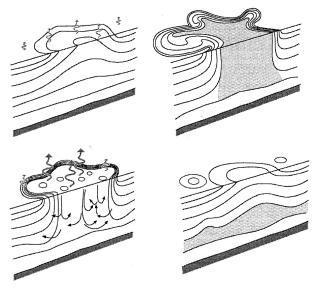
Vertical velocity spectra measured by gliders

Lucas Merckelbach, David Smeed and Robert Scott

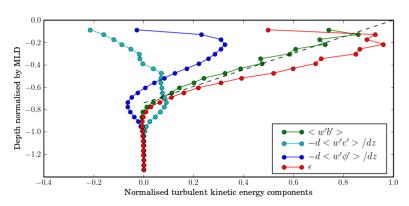
National Oceanography Centre Southampton

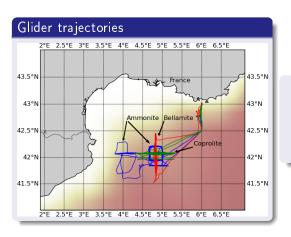
National Oceanography Centre, Southampton


INIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

Outline

- Introduction
- Vertical velocity measurements from gliders
- Vertical velocity spectra
- Conclusions


Introduction


Introduction

Turbulent kinetic energy:

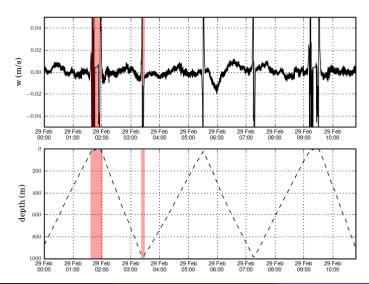
$$< w'b'> -\frac{d}{dz}\left\{< w'e'> +\frac{1}{\rho}< p'w'>\right\} -\epsilon = 0$$
 buoy. prod.
$$-\text{deformation} \qquad -\text{dissipation} = 0$$

Gulf of Lions Experiment 2008

- Three 1000m gliders
- CTD only
- 3 Month mission: mid January - mid April 2008

Vertical velocity – Summary

vertical velocity from pressure sensor vertical velocity modelled assuming still water conditions vertical velocity of water patch


Vertical velocity – Summary

Result:

- Two equations
 - *U*: glider speed (through water)
 - \bullet α' : angle of attack
- $w_{\rm g} = U \sin({\rm pitch} + \alpha')$
- $w = w_{\text{press.}} w_{\text{g}}$
- Model input:
 - CTD (density)
 - oil volume change buoyancy engine
 - attitude (pitch, heading)
- calibration parameters: drag coefficient, compressibility and hull volume

Paper: L. Merckelbach, D. Smeed and G. Griffiths (2009), Vertical velocities from underwater gliders, Journal of Atmospheric and Oceanic Technology. In press, available online.

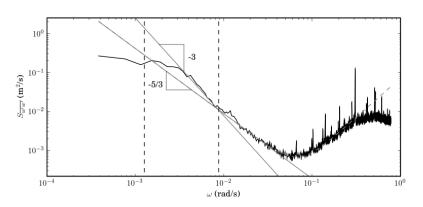
Example of measured time series (29 Feb. 2008)

Time series

- Based on navigation pressure sensor (1/4 Hz)
- Nyquist frequency 1/8 Hz
- ullet Time of single yo pprox 1.5 2 hours
- ullet Per profile: $f = [1.25 imes 10^{-4}, 1.25 imes 10^{-1}] \; \mathrm{Hz}$

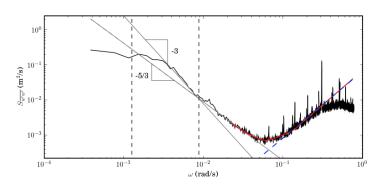
But first: consider one long time series, cut in segments of about 4 hours (2 yo cycles).

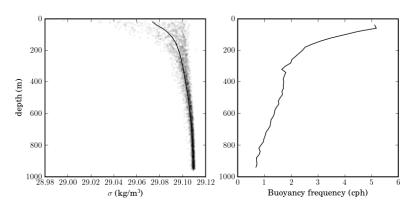
Time series


- Based on navigation pressure sensor (1/4 Hz)
- Nyquist frequency 1/8 Hz
- ullet Time of single yo pprox 1.5 2 hours
- ullet Per profile: $f = [1.25 imes 10^{-4}, 1.25 imes 10^{-1}] \; \mathrm{Hz}$

But first: consider one long time series, cut in segments of about 4 hours (2 yo cycles).

Vertical velocity spectra (calm period)

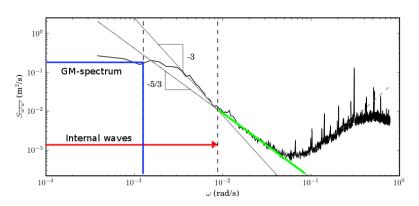

A vertical velocity spectrum in ω -space of a 10 days time series (about 100 segments).


Pressure sensor noise

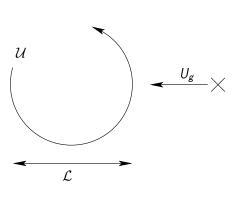
Blue: pressure sensor noise

Red: pressure sensor noise + fitted $\omega^{-5/3}$

Vertical velocity spectra (calm period)



$$N^2 = \frac{g}{\rho} \frac{d\rho}{dz}$$



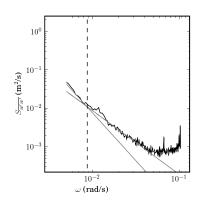
Vertical velocity spectra (calm period)

A 10-day vertical velocity spectrum in ω -space.

Taylor's frozen turbulence hypothesis:

 \mathcal{U} : turbulent velocity scale

 \mathcal{L} : turbulent length scale


Ug: glider speed

$$k = rac{\omega}{U_{g}}$$
 if $\mathcal{U} \ll U_{g}$

Upprox 0.01 m/s; U_g pprox 0.4 m/s.

-5/3: $\omega=$ 0.01..0.1 rad/s \Rightarrow L= 350..35 m Length scales too large for inertia

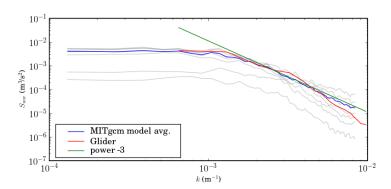
Taylor's frozen turbulence hypothesis:

 \mathcal{U} : turbulent velocity scale

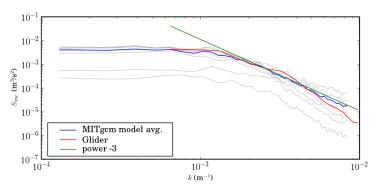
 \mathcal{L} : turbulent length scale

Ug: glider speed

$$k=rac{\omega}{U_{g}}$$
 if $\mathcal{U}\ll U_{g}$.

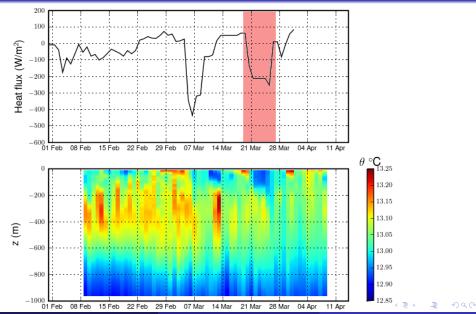

 $\mathcal{U}{pprox}~0.01~\text{m/s};~\mathcal{U}_g pprox 0.4~\text{m/s}.$

-5/3:
$$\omega=$$
 0.01..0.1 rad/s \Rightarrow $L=$ 350..35 m

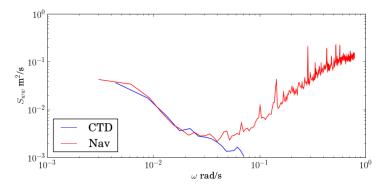

Length scales too large for inertial subrange.

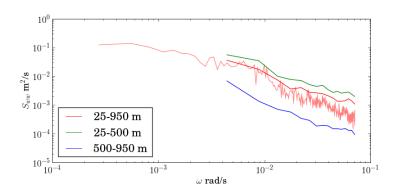
Model glider in model ocean

Comparison model simulation of convection MITgcm (400 W/m², completely mixed over depth (1000 m)), and a simulated glider.


Model glider in model ocean

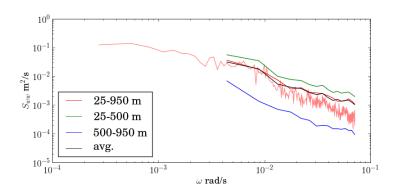
- glider spectrum $\omega \to k$ matches model spectrum in k;
- glider spectrum approximately depth averaged spectrum;
- suggests Taylor's hypothesis to be applicable.


Second convection event

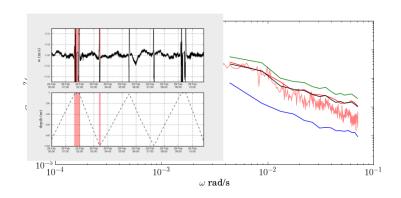

Using CTD data instead?

CTD about 10 times more accurate \Rightarrow 2 decades gain. Sample interval CTD: 44.4 seconds.

Time series per profile.



Does the glider measure a depth-averaged spectrum?



Does the glider measure a depth-averaged spectrum?

Does the glider measure a depth-averaged spectrum?

GM-spectrum

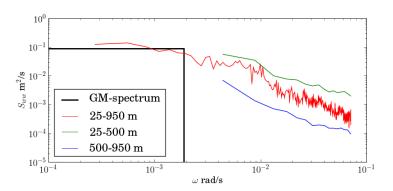
Below mixed layer: $N \approx 3 \times 10^{-4} \text{ s}^{-1}$.

$$S_{ww}(\omega) = S_{ww}^{GM} = 1.5\varepsilon N^{-2} \ \forall \ \omega < 2\pi N$$

$$S_{ww}(\omega) = 0 \ \forall \ \omega >= 2\pi N$$

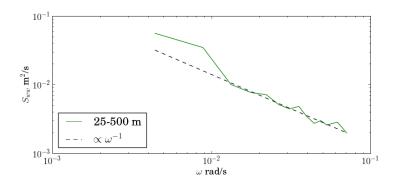
$$\frac{1}{2\pi} \int_0^\infty S_{ww} d\omega = S_{ww}^{GM} N = Var(w) = 2.6 \times 10^{-5} \ \text{m}^2/\text{s}^2$$

$$\uparrow$$

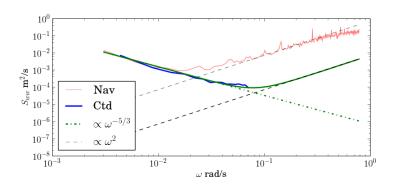

from CTD derived velocity data

So that:

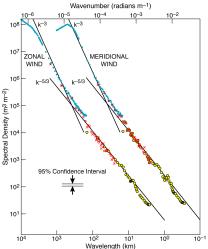
 $S_{ww}^{GM} \approx 0.09 \text{ m}^2/\text{s}$ and $\varepsilon \approx 5 \times 10^{-9} \text{ m}^2/\text{s}^3$.


GM-spectrum

GM spectrum estimated from variance of w below the mixed layer.



-1 spectrum: z = 25..500 m


-5/3 spectrum: z = 500..950 m

-5/3 spectrum: z = 500..950 m

Nagstrom and Gage spectrum (1986) (from: P. Lynch)

Conclusions

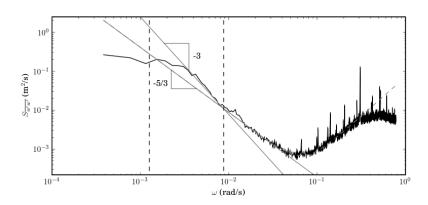
- We can deduce vertical velocity measurements from glider observations
- Useful spectra for $f = [1 \times 10^{-4}, 2 \times 10^{-2}]$ Hz
- Glider spectrum \approx depth-averaged spectrum
- Internal subrange is out of reach
- Garret-Munk spectrum recoverable
- Glider data also show -5/3 range for length scales larger than expected for inertial subrange

To resolve higher frequencies/wavenumbers:

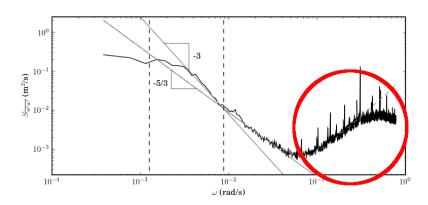
- use of dedicated device to measure turbulence (for example *microrider*)
- more sensitive depth sensor (reducing the full-scale)
- glider in drift mode (Langrangian spectrum as done with floats)

Conclusions

- We can deduce vertical velocity measurements from glider observations
- Useful spectra for $f = [1 \times 10^{-4}, 2 \times 10^{-2}]$ Hz
- Glider spectrum \approx depth-averaged spectrum
- Internal subrange is out of reach
- Garret-Munk spectrum recoverable
- Glider data also show -5/3 range for length scales larger than expected for inertial subrange


To resolve higher frequencies/wavenumbers:

- use of dedicated device to measure turbulence (for example microrider)
- more sensitive depth sensor (reducing the full-scale)
- glider in drift mode (Langrangian spectrum as done with floats)


Vertical velocity spectra (calm period)

A vertical velocity spectrum in ω -space of a 10 days time series (about 100 segments).

Vertical velocity spectra (calm period)

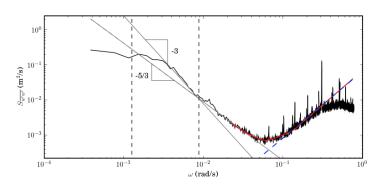
A vertical velocity spectrum in ω -space of a 10 days time series (about 100 segments).

Pressure sensor noise

Assume noise in depth signal, h_{ε} , to be white:

$$h_m = h + h_{\varepsilon} \xrightarrow{\mathsf{FFT}} H_m = H + H_{\varepsilon}$$

 $w = \frac{dh}{dt} \Rightarrow W_{\varepsilon} = i\omega H_{\varepsilon}$


So that $W_{\varepsilon}W_{\varepsilon}^* = \omega^2 H_{\varepsilon}H_{\varepsilon}^*$.

Pressure sensor noise

Blue: pressure sensor noise

Red: pressure sensor noise + fitted $\omega^{-5/3}$

